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Abstract: Reinforcement Learning (RL) systems are trial-and-error learners. This feature altogether with delayed 

reward, makes RL flexible, powerful and widely accepted. However, RL could not be suitable for control of 

critical systems where the learning of the control actions by trial and error is not an option. In the RL literature, 

the use of simulated experience generated by a model is called planning. In this paper, the 

planningByInstruction and planningByExploration techniques are introduced, implemented and compared to 

coordinate, a heterogeneous multi-agent architecture for distributed Large Scale Systems (LSS). This 

architecture was proposed by (Javalera 2016). The models used in this approach are part of a distributed 

architecture of agents. These models are used to simulate the behavior of the system when some coordinated 

actions are applied. This experience is learned by the so-called, LINKER agents, during an off-line training. 

An exploitation algorithm is used online, to coordinate and optimize the value of overlapping control variables 

of the agents in the distributed architecture in a cooperative way. This paper also presents a technique that 

offers a solution to the problem of the number of learning steps required to converge toward an optimal (or 

can be sub-optimal) policy for distributed control systems. An example is used to illustrate the proposed 

approach, showing exciting and promising results regarding the applicability to real systems.

1 INTRODUCTION 

RL is a well-known and formally studied family of 

learning techniques. Moreover, depending on the 

formulation of the problem and the richness of 

experience data, the chances of convergence are high. 

One of the main characteristics of RL is that the 

agents learn by trial and error discovering which 

actions yield the maximum reward by trying them. 

However, it is also this characteristic what makes RL 

unsuitable for controlling critical time-varying 

systems where good performance is crucial all the 

time, and the cost of this learning curve of the agent 

can be too high. 

Currently, some algorithms implement planning 

techniques such as Dyna-Q and Prioritized Sweeping. 

Some examples of applications of Dyna-Q algorithm 

are (Tateyama et al. 2007), (Hwang et al. 2015) and 

(Hwang et al. 2017). Moreover, for Prioritized 

Sweeping see (Zajdel 2018) and (Desai and Patil 

2017). In these cases, the planning techniques are 

used to simulate experience generated by a model. 

Here two planning techniques are introduced aiming 

to work cooperatively and coordinated getting a 

heterogeneous multi-agent architecture for Large 

Scale Systems (LSS). 

These planning techniques were specially 

developed to fit into the LINKER Architecture (LA) 

introduced in (Javalera 2016) as the MA-MPC 

architecture. First descriptions and applications of 

this architecture were presented in (Javalera et al. 

2010), and the use of this architecture and 

methodology to the Barcelona Drinking Water 

Network is described in (Morcego et al. 2014). In all 

these applications the agents implement a control 

technique called "Model Predictive Control (MPC)," 

therefore the name of the architecture. However, this 

work is called LINKER architecture, since the 

algorithms and architecture can be applied to other 

types of agents as well, not just MPC. 

Reinforcement learning (RL) works based on 

experience, which, in LA is used aiming to reduce the 
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requirement of iterative methods, facilitating that the 

system behaves almost like a reactive system with 

reduced response time. Another relevant feature of 

RL exploited by the LINKER Architecture is that it 

explicitly considers the whole problem of a goal-

directed agent interacting with an uncertain 

environment. Moreover, this is in contrast with many 

approaches that consider sub-problems without 

addressing how they might fit into a larger picture. 

Even more, this is important for the LINKER 

Architecture because it is distributed control 

architecture of LSS, where some of its control 

variables overlap between sub-systems; this issue is 

aboard in the next section.  

This paper aims to explain how using the 

proposed learning techniques and the LINKER 

Architecture, and is possible to integrate agents of a 

distributed system with LINKER agents trained with 

the proposed planning techniques. Each LINKER 

agent calculates the value of shared variables between 

overlapping systems looking for the global optimum 

of the relation and coordinating its process with the 

other agents of the system obtaining an overall good 

performance.  This work also proposes a solution that 

makes possible to achieve the benefits of RL 

techniques in critical systems that cannot afford to 

pay the learning curve of a learner agent. Even more, 

this is made using a meaningful reinforcement given 

by the distributed agents that try the actions in its 

internal model in offline training. Once all the 

functions learned are evaluated and approved, the 

LINKER agents use an online optimization algorithm 

that can also have adaptation properties. 

Another contribution of this paper is to compare 

two learning techniques. In the first one, the actions 

used in training are dictated by a teacher that, in this 

case, is the centralized MPC (Model Predictive 

Control) controller. In second one a learning 

technique where actions are randomly selected. The 

LINKER agent explores actions trying and evaluating 

it, through the interaction with the agents that directly 

control the model. An illustrative example is 

developed using both techniques. 

The structure of the paper is as follows: Section 2 

introduces the problem statement. Section 3 presents 

the model driven control and the model driven 

integrated learning. Section 4 presents the planning 

by instruction while Section 5 presents the planning 

by exploration. Section 6 uses an application case 

study to illustrate the performance of the proposed 

architecture and approaches. Finally, Section 7 

summarizes the main conclusions and describes the 

future line of research. 

2 PROBLEM STATEMENT 

In order to describe the learning techniques 

mentioned above, it is necessary to explain the 

underlying problem, which is the distributed control 

problem that the LINKER architecture addresses. 

This architecture is applied to a LSS. 

In order to control an LSS in a distributed way, 

some assumptions have to be made on its dynamics, 

i.e. on the way the system behaves. Let us assume first 

that the system can be decomposed into n sub-

systems, where each sub-system consists of a subset 

of the system equations and the interconnections with 

other sub-systems. The problem of determining the 

partitions of the system is not addressed in this work.  

The set of partitions should be complete. This means 

that all system states and control variables should be 

included at least in one of the partitions. 

Definition 1. System partitions. P is the set of 

system partitions and is defined by 

𝑃 = {𝑝1 , 𝑝2 , … , 𝑝𝑖} (1) 

Where each system partition (subsystem) pi, i =
{1…n} is described by a model. In this example, a 

deterministic linear time-invariant (LTI) model is 

used to represent a drinking water distribution 

network; this type of model can also be used for other 

type of LSS where there is a network of connected 

nodes and an element that flows in the network that 

should be distributed to fulfill certain demands. This 

model is expressed in discrete-time as follows 

𝑥𝑖(𝑘 + 1) = 𝐴𝑖𝑥𝑖(𝑘) + 𝐵𝑢𝑖(𝑘) + 𝐵𝑑,𝑖𝑑𝑖(𝑘) 

𝑦𝑖(𝑘) = 𝐶𝑖𝑥𝑖(𝑘) + 𝐷𝑢,𝑖𝑢𝑖(𝑘) + 𝐷𝑑,𝑖𝑑𝑖(𝑘) 

(2) 

The model describes the topology and dynamics 

of the network. Variables x, y, u, d are the state, 

output, input and disturbance vectors (for this case, 

the demands) of appropriate dimensions, 

respectively; A, B, C and D are the state, output, input 

and direct matrices, respectively. Sub-indexes u and 

d refer to the type of inputs the matrices model, either 

control inputs or exogenous inputs (disturbances). 

Control variables are classified as internal or shared 

variables.  
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Figure 1: The problem of distributed control. 

Definition 2. Internal Variables. Internal variables 

are control variables that appear in the model of only 

one subsystem in the problem. The set of internal 

variables of a partition i is defined by equation 3: 

𝑈𝑖 = {𝑢1, 𝑢2, … , 𝑢𝑛𝑖} (3) 

Definition 3. Shared Variables. Shared variables are 

control variables that appear in the model of at least 

two subsystems in the problem. Their values should 

be consistent in the subsystems they appear. They are 

also called negotiated variables because their values 

are obtained through a negotiation process. Vij  is the 

set of negotiated variables between partitions i and j, 

defined by equation 4 

𝑉𝑖𝑗 = {𝑣1, 𝑣2, … , 𝑣𝑛𝑖𝑗} (4) 

Each subsystem i is controlled by a controller (agent) 

using: 

 the model of the dynamics of subsystem i given 

by eq. (2); 

 the measured state xi(k) of subsystem i; 

 the exogenous inputs di(k) of subsystem i over a 

specific horizon of time; 

As a result, each agent calculates directly the 

internal control actions, ui(k), of subsystem i. Figure. 

1 on the left shows a sample system divided into three 

partitions. Subsystem 1 has two shared variables with 

sub-system 2 and subsystem 2 has one shared variable 

with sub- system 3. The relations that represent those 

variables are shown on the right as lines. The problem 

consists in optimizing the manipulated variables of 

the global system using a distributed approach, i.e. 

with three local control agents that should preserve 

consistency in the shared variables. In order to solve 

the problem described above, a new framework has 

been developed. This framework comprises a 

methodology, the so called the LINKER 

methodology and the architecture. The methodology 

helps to implement the architecture 

3 A MODEL DRIVEN CONTROL 

AND A MODEL DRIVEN 

INTEGRATED LEARNING 

The LINKER architecture integrates a model driven 

control and a model driven learning process. In order 

to perform the negotiation of the shared variables, the 

Linker agent learns to think globally, by means of an 

offline training where negotiator and agents interact 

and accumulate meaningful experience. This offline 

training is made using a model of each sub-system 

environment computing value functions (Q-tables) 

whose optimality and efficiency are proved in the 

experimentation phase, in order to be used later in the  
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Figure 2: Integration of the models of agents in the planning process. 

negotiation process. This allows eliminating iterative 

communication between agents in the negotiation 

process, increasing efficiency, decreasing time of 

response and making it safe to implement.  

Figure 2 shows the integration of the models in the 

agents in the planning process. The Linker agent 

assigns the values of V to the related agents. Each 

related agent has its own reference, disturbance model 

and plant model according to Eq. 2. The local 

controller takes V as constraints, computes vector c and 

applies the control action to the plant model producing 

y and e. e is an error vector that indicates to the Linker 

how good the actions (V) were. In order to evaluate that, 

it is necessary to calculate the state of both agents. This 

is made based in the cost function of the agents, as for 

example, 

s1=Σ Hpi=0J(i)=Σ Hpi=0Jx (i)+Σ Hpi=0 JΔu(i) (5) 

s2=Σ Hpi=0J(i)=Σ Hpi=0Jx (i)+Σ Hpi=0 JΔu(i)  (6) 

where 
Jx(i) =  e⃗ T(i) wx e⃗ (i)   and 

J∆u(i) =  ∆u⃗⃗ ⃗⃗  T(i)w∆x∆u⃗⃗ ⃗⃗  (i) 
(7) 

The  reward (r), is calculated using the states of 

both MPC agents with the equation: 

σ = ρ − s1 − s2 (8) 

where σ represents the reward r and ρ is a constant 
that satisfies: 

 s1 + s2 < ρ (9) 

Given that s1 and s2 represents a sum of quadratic 

errors (5), (6), the reward will be always positive. 

With a smaller sum of errors the reward will be larger 

and vice versa. s1 and s2 have to be discretized in order 

to be use in  

Q(s´1, a´, s´2) ← r+∝ Q(s1, a, s2) (10) 

that is the function that updates each Q-table where 

the parameters ∝ rates past experience. 

The purpose of this three-dimensional matrix is to 

map the state agent 1 (s1) and the state of agent 2 (s2) 

to a single action. The coordination feature of the 

Linker agent lies on the fact that, in exploitation, the 

Linker agent will map to an optimal (or sub-optimal) 

action every s1 and s2 eliminating with this conflicts 

between agents assigning the value of shared 

variables. 

The Linker uses this simulated experience and 

updates the Q-values in the Q-tables, one for each 

shared variable of the vector V in order to improve its 

policy. All this process is implemented through the 

PlannigByInstruction and PlanningByExploration 

Qv1 Qv2 Qvn … 

Local 

controller 

Disturbance 

Model 1 

 agent1  agent2 

LINKER 

V V d r1 
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d 
r2 

y 

c 
e2 
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controller Plant Model 2 

Disturbance 

Model 2 

Plant Model 1 

e1 

Planning 
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behaviors of the Linker that will be explained in 

further detail in next section. 

The integration of RL with the LTI model in this 

approach offers high cohesion to the system.  The 

support that the LTI model (2) offers is deterministic, 

descriptive and highly trusted. So, the integration of 

these techniques coupled by the implementation of 

the methodology makes the planning process efficient 

and reliable. 

The policy obtained is evaluated in the 

experimentation phase. The fact that the policy is 

obtained offline is a very important characteristic of 

this approach due to the critical nature of LSS. The 

use of a standard trial-and-error technique of RL 

would make the implementation of this approach 

unfeasible. If the learning process is driven from real 

experience in the plant, the system will be unfeasible 

most of the time at the beginning of the process and 

the actuators can be damaged. That is why, in this 

framework, in order to arrive to the implementation 

phase, the optimality of the obtained policy has to be 

tested beforehand. 

4 PLANNING BY INSTRUCTION 

In contrast to some IA learning methods, like 

supervised learning, in this work, the term instruction 

refers to the way in which the action is selected in the 

learning process, and not to the type of the feedback 

used. So, PlannigByInstruction behavior (PBIB) is a 

learning behavior that implements a specific 

combination of choosing actions and providing 

feedback.  

4.1 Description of the Approach 

The purpose of this learning behavior is to obtain an 

optimal policy (Q), constructing a knowledge base 

based on the evaluation of actions given by a teacher. 

This teacher has to be a trustable controller, like a 

centralized MPC or the actions taken by a human 

expert. These actions are simulated in the model 

system and the result (states sa1 and sa2, (5), (6)) is 

evaluated obtaining a reward (r) (8) that is used to 

obtain the new Q-value (10). nit iterations are made 

for the complete control horizon with random initial 

conditions. This behavior is performed offline in the 

training phase of the LINKER methodology. 

Assuming that there is a single negotiation variable, 

the PlanningByInstruction behavior algorithm 

describes the training algorithm that the NA executes 

in order to update its Q-table by this learning behavior   

In this algorithm, sa1 and sa2 represents the states 

(5), (6) of agent1 and agent2 (the two agents that 

share that particular negotiation variable). Va1 and Va2 

are the internal representations of the shared variable 

in Agent1 and Agent2 (sub-indices a1 and a2 

respectively) for k instant. teacherAction is the action 

dictated by the teacher. 
 

Define 𝜌, n,  sa1 ← random, sa2 ← random, 

controlHorizon, teacherAction (1-control horizon),  k=1 

loop while iterations ≤ n 

   loop while k ≤ controlHorizon 

   Va1 (k) ← teacherAction (k) 

          Va2 (k) ← teacherAction (k) 

sa1 ← send Va1 (k) to agent1, agent1 set the 

action Va1 (k) and calculates its internal variables, 

apply all the controls (actions) obtained (and 

given) for step k to its LTI model of its partition 

and calculates sa   using  (5). 

sa2 ← send Va2 (k) to agent2, agent2 set the 

action Va2 (k) and calculates its internal variables, 

apply all the controls (actions) obtained (and 

given) for step k to its LTI model of its partition 

and calculates sa2 using (6). 

    r  ← ρ- sa1 - sa2 

Q (sa1’, teacherAction (k)’, sa2’ )← r +α Q(sa1, 

teacherAction (k), sa2) 

sa1’← sa1 

sa2’← sa2 

k=k+1 

end loop 

iterations=iterations+1 

end loop 

5 PLANNING BY EXPLORATION 

Learning by exploration is the main type of learning 

technique used in RL. It is based on trying random 

actions from a deterministic and finite set, in order to 

obtain a feedback that represents how good the taken 

action was. Learning by exploration in LSS can be a 

difficult task because of the size and complexity of 

these systems. The PlanningByExploration behavior 

(PBEB) implements learning by exploration 

combined with selective feedback. The use of 

selective feedback reduces drastically the time of 

training needed in order to obtain an optimal policy 

(Q) and the difficulty to find a good parameterization 

of the learning process in the experimentation phase. 

The purpose of this learning behavior is to obtain an 

optimal policy (Q), constructing a knowledge base 

based on the exploration of a deterministic and finite 
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Figure 3: Water network considered as case study. 

set of actions. These actions are simulated in the model 
system and the result (states sa1 and sa2) is evaluated 
and only in case a feasible solution for both agents 
(agent1 and Agent2) is found, the feedback is selected 
for leaning. For those cases, a reward (r) is obtained 
and used to calculate the new Q-value (10). nit 
iterations are made for the complete control horizon 
with random initial conditions. This behavior is 
performed offline in the training phase of the LINKER 
methodology. Assuming that there is a single 
negotiation variable, the PlanningByExploration 
behavior algorithm describes the training algorithm 
that the LINKER executes in order to update its Q-
table by this learning behavior: 

 

Define 𝜌, n,  sa1 ← random, sa2 ← random, 

controlHorizon, k=1 

loop while iterations ≤ n 

   loop while k ≤ controlHorizon 

  a ← random (a) ∈ A  Q (s1′,a, s2′) 

  Va1 (k) ← a 

   Va2 (k) ← a 

sa1 ← send Va1 (k) to agent1, agent1set the action 

Va1 (k) and calculates its internal variables, apply 

all the controls (actions) obtained (and given) for 

step k to its LTI model of its partition and 

calculates sa1  using  (5). 

sa2 ← send Va2 (k) to agent2, agent2set the action 

Va2 (k) and calculates its internal variables, apply 

all the controls (actions) obtained (and given) for 

step k to its LTI model of its partition and 

calculates sa2 using (6). 

if agent1 and agent2 have a feasible solution 

r  ← ρ- sa1 - sa2 

Q (sa1’, a’, sa2’ )← r +α Q(sa1, a, sa2) 

sa1’← sa1 

sa2’← sa2 

    else 

sa1’← random 

sa2’← random 

    end if 

    k=k+1 

end loop 

iterations=iterations+1 

end loop 

6 ILLUSTRATIVE APPLICATION 

This section shows an example of the optimization of 

a water distribution network using the proposed 

architecture. The partitioning of the network obeys a 

geographical criterion, so it has been divided in two 

partitions, north and south (see Figure 3).     The tanks 

x1 and x2 will belong to the north sector where a local 

control is required. The tanks x3 and x4 will belong to 

the south sector, with its corresponding local 

controller. 

There are two supply sources and four demand 

points, one for each tank. Typically the demands have 

a sinusoidal behavior throughout the day that try to 

emulate the actual demand behavior. The system shall 

operate in a distributed way but looking for global 

optimum in the controlled tank levels, satisfying the 

demand points of both subsystems, and avoiding 

collisions or conflicts among them.  

It is expected that the performance of the tank 

levels follow a reference variable in time, but without 

performing drastic actions in the actuators. The target 

control is defined as follows: For each tank (x1, x2, x3, 

x4)   there is a given reference that describes the 

desirable behavior of the levels of these tanks. These 

levels will be achieved through the manipulation of 

the control variables (u1, u2,…,u8 ) with minor 

variations over time. 

6.1 Using PBIB 

6.1.1 Training 

Figure 4 shows a representation of the Q-values 

calculated in different phases of the training of the 

variable u5. The Q-table contrast the error of M1 and 

M2 (or the discretize state of each agent) with the 

action taken.  

In order to use only positive errors, in Fig. 4, 

errors range from 0 to 200. Negative errors range 

from 0 to 99, 100 corresponds 0 and from 101 to 200 
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are range the positive errors. Actions are ranging from 

0 to 100. As it can be appreciated in the figure, the 

states visited in this training tend to be denser near the 

optimum state (100). This is because all the actions 

were dictated by the teacher, the centralized system. 

Making a comparison between sub-figures (a), (b), (c) 

and (d) it can be seen that the Q-values cloud is 

spreading on the axis of the actions and becomes 

denser as the training progresses. It is important to 

notice that the only random factor in this training 

(using PBIB) are the initial states of  A1 and A2. The 

fact that in this training instructed learning is used 

makes it fast and efficient. The Q-values stored in these 

Q-tables represents meaningful and evaluated experi-

ence (because of the accumulation of the rewards). 

It can be noticed that between section c and d of 

the Fig. 4 there is not much difference. This is one of 

the factors that can show that no more iterations are 

needed. Additionally, the results of the exploitation 

phase are necessary in order to determinate that the 

training phase is finished. Similar results are obtained 

for the rest of the Q-tables. A training based on PBIB 

can be also used as a good start (or seed) before a non-

instructed learning technique. 

6.1.2 Simulation 

As it was mentioned before, in order to know if the 

training phase is finished it is necessary to evaluate 

the Q-tables making test and exploiting. In order to 

do that, the greedy behavior has to be implemented. 

The algorithm of greedy behavior is shown below. 

 
Q (s1,a, s2) ∀ s ∈ S, a ∈ A 

observe initial state, s1,s2 

loop 

a ←max a ′∈ A  Q (s1′,a, s2′) 

      s1 ← send Va1 (k) to agent 1 

           s2 ← send Va2 (k) to agent 2 

s1←s1′ 

s2← s2′ 

end loop 

 

This algorithm observes the state of the agents s1 

and s2 (in a discretized way) and maps it to the action 

  

Q-table Negotiation variable u5 training of 50 

iterations 

(a) 

Q-table Negotiation variable u5 training of 100 

iterations 

(b) 

  

Q-table Negotiation variable u5 training of 200 

iterations 

(c) 

Q-table Negotiation variable u5 training of 300 

iterations 

(d) 

Figure 4: Different phases of the training using PBIB of the variable u5. 
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that maximizes the accumulated Q-value. Figure 6 
shows the resulting  actions of the shared variables 
applied in the simulations shown above. It can be 
notice that the ones calculated by the Linker (blue) 
vary les over time than the ones calculated with a 
centralized MPC (green). This is archived without 
sacrificing performance. 

6.1.3 Performance Analysis and Validation 

Table 1 shows the average absolute error of the output 
of 30 simulations. The first column was calculated 
with a training of 50 iterations, next ones with 100 
iterations, 200 and 300 iterations. The sum of the 

error A1 and error A2  provides the total error. It can 
be seen how the error in the LINKER system (the first 
three) decreases as the iterations of the training 
progresses. Also it can be noticed that between 200 
and 300 iterations there is not much difference in the 
error.  The analysis of this table and the differences 
between the resulting Q-tables is useful to establish 
when the training is completed. The results shown in 
Figure 5 show, that the LINKER system using 
Instructed learning by implementing the 
PlanningByInstruction behavior (PBIB) has a better 
performance than the centralized MPC solution  from 
iteration 200. 

Table 1: Accumulative ∆u between trainings. 

𝐽∆𝑢 50 it 100 it 200 it 300 it 

Centralized MPC 4,666e-05 6,333e-05 5,000e-05 6,333e-05 

LINKER 0,0140833 0,0153533 0,0116933 0,0155466 

 

  

  

Figure 5: Results of the Linker agents (blue) compared with the centralized MPC (green) solution. The red line is the reference, 

purple x min, cyan x max. 
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Table 2: Average of absolute error between increasing 

iterations during training with PBIB. 

𝐽𝑒 50 
 it 

100 
it 

200 
it 

300 
it 

A1 62,36     24,04 18,07 17,14     

A2 60,11 24,23     17,20     17,37     

LINKER 
(PBIB) 

122,47 48,27 35,27 34,49     

Centralized 
MPC 

45,91 44,08 45,04 44,71 

Table 2 shows the accumulative ∆u objective 
applied by the LINKER and the centralized MPC 
solution in 30 simulations. The first column was 
calculated with a training of 50 iterations, next ones 
with 100, 200 and 300 iterations. 
The results of this example shows that a system with 
multiples dependences between its components can 
be governed efficiently using distributed agents and, 
even more, it can increase its performance using the 
LINKER architecture implementing instructed 
learning by the PBIB behavior. 

It can also be observed that the actions calculated 
by the LINKER (the shared variables) vary less over 
time without sacrificing performance. But the 
accumulative control effort is minor compared with 
the centralized MPC. 

Other experiments have been carried varying the 
weights of the parameters 𝑤∆𝑥 and 𝑤𝑥  of Eq. (7). 
Making the same changes in the teacher (the 
centralized MPC) and performing a new training, the 
Linker adapts to the new parameterization providing 
similar results than ones obtained with the ones used. 

6.2 Using PBEB 

6.2.1 Training 

The training implements the PlanningByExploration 

behavior. Many experiments were made in this phase. 

First experiments were made using just explorative 

learning. Then, the PlanningByExploration behavior 

(PBEB) was implemented varying the number of the 

iterations in the training. Then, PBEB with selective 

penalization of reward was implemented.  All 

training was made for the complete control horizon 

(24 hrs.) for each shared variable. Random initial 

conditions were set for each complete horizon. 

During training, the Q-table for each shared variable 

was filled with the Q-values calculated for all states 

visited. 
The learning behavior PlanningByExploration, 

selects the actions that leads to a feasible solution of 
the related MPC agents. In this experiment, PBEB 

with selective penalization of reward was 
implemented applying a penalization in the opposite 
case, this means that if there is no feasible solution for 
the local agents, a negative reward was assigned (-
1000). This negative reward ensures that the Q-value 
of state-action-state that leads to critical states stays 
low and accelerates drastically the training process 
allowing the LINKER system to improve the 
centralized MPC solution from the iteration 20 (see 
Table 3). 

Table 3: Comparison of the average absolute error between 

local agents, LINKER system and centralized MPC 

solution with trainings of 20, 50 and 100 iterations. 

𝐽𝑒 20 it 50 it 100 it 

A1 17,2429    15,8219    16,3230    

A2 18,3069    17,5714 16,3808    

LINKER 35,5499    33,3932 32,7038    

Centralized 
MPC 

45,3116     43,7657 42,8805     

The experimentation made on this example shows 

that using just using exploration, the system cannot 

recover from states related to unfeasible solutions. In 

addition, these states have high frequency of visits 

because it is more likely that the random action 

selected were not the good one. This affects 

negatively the learning process because the 

accumulation of many small rewards becomes in 

larges Q-values. 

In order to solve that issue, selective feedback 

was applied. This reduces drastically the iterations 

needed using just exploration and the Q-values 

result more reliable. Moreover, the use of a negative 

reward in the selected actions that lead to unfeasible 

states also provide a huge improvement. After 

assigning the negative reward, s’1 and s’2    are set to 

random in order to continue the learning process 

effectively. 

With these conditions a training of 100 iterations 

was carried out. Figure 6 (a) shows a color 

representation of the Q-values calculated in the 

learning process. The Q-table allows to present the 

error of A1 and A2 (or the discretize state of each 

agent) with the action taken. In order to use only 

positive errors, the errors are scaled from 0 to 200. 

Negative errors are scaled from 0 to 99, 100 is 0 

while values from 101 to 200 correspond to positive 

errors. Actions are ranging from 0 to 100.  The 

figure compares the Q-tables obtained using PBEB 

(a) and (PBIB) (b). From Figure 6 (a), it can be 

noticed that the cloud of data spreads all over the 
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action axis, meaning that all actions were explored. 

Fig. 6 (b) shows the Q-table of  shared variable u5  

with a training of 300 iterations using PBIB. In this 

Q-table, the cloud of Q-values is more compact 

because its training only tried the actions dictated by 

the teacher (in this case, centralized MPC).  

 

Figure 6: Comparison of the resulting Q-Tables of the 

variable u5 using PBEB (a) and PBIB(b). 

6.2.2 Simulation 

In other to know if the training phase is finished it is 
necessary to evaluate the elements of the Q-table by 
means of testing and exploiting. The simulation 
process implements the greedy behavior (described 
above).  

The simulation results presented in Figure 7 allow 
to compare the LINKER using PBEB (blue line) and 
the centralized solution (green line) with the same 
random initial conditions and references (red line), 
obtained after a training of 100 iterations using PBEB 
with selective penalization of reward explained 
above. Notice that the reference is variable in time. 
The parameters of MPC agents and the centralized 
MPC system are the same.  

From Figure 7, it can be noticed that both approach 
force the system to track the reference. 

  

  

Figure 7: Results of the MPC agents (blue) compared with the centralized MPC (green) solution. The red line is the reference, 

purple x min, cyan x max.  
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6.2.3 Performance Analysis and Validation 

Many simulations were made to assess the 
performance of the extended proposed approach. 
Table III shows the comparison of the average 
absolute error (with respect to the reference) of 30 
simulations in the training process of the best Q-
tables found, the ones obtained using PBEB with 
selective penalization of reward. Columns show the 
results of a training of 20, 50 and 100 iterations with 
random reference and initial conditions. From this 
table, it can be noticed that the LINKER solution 
improves the centralized solution since the first 20 
iterations of the training and keeps improving slightly 
as iterations increase.  

It was observed that the actions calculated by the 
Linker (the shared variables) vary less over time 
without sacrificing performance. But, the 
accumulative control effort is grater compared  
with the centralized MPC. Other experiments were 
made increasing or decreasing the negative reward 
but for this problem the best negative reward was -
1000. 

7 CONCLUSION 

This article describes three behaviors that 
implemented in the LINKER architecture, they 
manage to separate the learning process of the 
optimization process, eliminating with this the cost 
of the number of learning steps necessary to 
converge towards an optimal (or can be sub -
optimal) policy. 

Explorative training is usually exhaustive. In this 
work this complexity is reduced applying selective 
feedback (using PBEB) but the combination of the 
use of negative reward for the selected feedbacks not 
just improves the results compared to the centralized 
MPC but also the PlanningByInstruction Behavior 
(PBIB) and decrease drastically the iterations 
needed in the training phase. Table 4 shows the 
average absolute error with respect to the reference 
of 30 simulations of the PBEB with selective 
penalization of reward and the PBIB. Random initial 
conditions and random references were use. The 
random cases calculated for PBEB with selective 
penalization of reward were different than the ones 
calculated for PBIB. The training of the PBEB with 
selective penalization of reward, involves 100 
iterations while in the case of the PBIB uses 300 
iterations. 

 
 

Table 4: Errors between PBEB with selective penalization 

of reward and PBIB. 

 PBEB selective 

reward 

PBIB 

A1 16,3230    24,04 

A2 16,3808    24,23     

LINKER 32,7038    48,27 

Centralized MPC 42,8805     44,08 

Table 5 shows the average 𝐽∆𝑢 obtained using the 
LINKER and the centralized MPC solution in the 
same experimentation conditions that those used to 
obtain the results presented in Table 4. 

Table 5: Comparison of the J_∆u between the PBEB with 

selective penalization of reward and PBIB. 

 PBEB PBIB  

Centralized MPC 0,0001 6,333e-05  

LINKER 0,0107 0,0153533  

Thus, the experimentation results obtained in this 

example show that PBEB with selective penalization 

of reward is a more efficient learning technique than 

PBIB due to the reduction of the error and the 

iterations needed in training. 

The training of the PBEB with selective 

penalization of reward and the LINKER framework 

was successfully applied into a more realistic case of 

study, the Barcelona drinking water network (DWN) 

case study (Morcego et al. 2014) and (Javalera et al. 

2019). This DWN in managed by Aguas de 

Barcelona, S.A. (AGBAR).   
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