Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-
r., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P.,
Sainath, T. N., et al. (2012). Deep neural networks for
acoustic modeling in speech recognition: The shared
views of four research groups. IEEE Signal processing
magazine, 29(6):82–97.
Hu, M.-h., Dong, Q.-l., Liu, B.-l., and Malakar, P. K.
(2014). The potential of double k-means clustering
for banana image segmentation. Journal of Food Pro-
cess Engineering, 37(1):10–18.
IPC (2018). International potato center. https://cipotato.org.
Accessed: 04 Septembre 2018.
Jhuria, M., Kumar, A., and Borse, R. (2013). Image proces-
sing for smart farming: Detection of disease and fruit
grading. In Image Information Processing (ICIIP),
2013 IEEE Second International Conference on, pa-
ges 521–526. IEEE.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012).
Imagenet classification with deep convolutional neu-
ral networks. In Advances in neural information pro-
cessing systems, pages 1097–1105.
LeCun, Y., Boser, B. E., Denker, J. S., Henderson, D.,
Howard, R. E., Hubbard, W. E., and Jackel, L. D.
(1990). Handwritten digit recognition with a back-
propagation network. In Advances in neural informa-
tion processing systems, pages 396–404.
Miller, B. K. and Delwiche, M. J. (1989). A color vision
system for peach grading. Transactions of the ASAE,
32(4):1484–1490.
Ming, W., Du, J., Shen, D., Zhang, Z., Li, X., Ma, J. R.,
Wang, F., and Ma, J. (2018). Visual detection of
sprouting in potatoes using ensemble-based classifier.
Journal of Food Process Engineering, 41(3):e12667.
Mohanty, S. P., Hughes, D. P., and Salathé, M. (2016).
Using deep learning for image-based plant disease de-
tection. Frontiers in plant science, 7:1419.
Noordam, J. C., Otten, G. W., Timmermans, T. J., and van
Zwol, B. H. (2000). High-speed potato grading and
quality inspection based on a color vision system. In
Machine Vision Applications in Industrial Inspection
VIII, volume 3966, pages 206–218. International So-
ciety for Optics and Photonics.
Oppenheim, D. and Shani, G. (2017). Potato disease classi-
fication using convolution neural networks. Advances
in Animal Biosciences, 8(2):244–249.
Picon, A., Alvarez-Gila, A., Seitz, M., Ortiz-Barredo, A.,
Echazarra, J., and Johannes, A. (2018). Deep con-
volutional neural networks for mobile capture device-
based crop disease classification in the wild. Compu-
ters and Electronics in Agriculture.
Redmon, J., Divvala, S., Girshick, R., and Farhadi, A.
(2016). You only look once: Unified, real-time object
detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 779–
788.
Scherer, D., Müller, A., and Behnke, S. (2010). Evaluation
of pooling operations in convolutional architectures
for object recognition. In Artificial Neural Networks–
ICANN 2010, pages 92–101. Springer.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Angue-
lov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A.
(2015). Going deeper with convolutions. In Procee-
dings of the IEEE conference on computer vision and
pattern recognition, pages 1–9.
Tao, Y., Heinemann, P., Varghese, Z., Morrow, C., and Som-
mer Iii, H. (1995). Machine vision for color inspection
of potatoes and apples. Transactions of the ASAE,
38(5):1555–1561.
Vízhányó, T. and Felföldi, J. (2000). Enhancing colour dif-
ferences in images of diseased mushrooms. Compu-
ters and Electronics in Agriculture, 26(2):187–198.
Xing, J., Bravo, C., Jancsók, P. T., Ramon, H., and De Baer-
demaeker, J. (2005). Detecting bruises on ‘golden de-
licious’ apples using hyperspectral imaging with mul-
tiple wavebands. Biosystems Engineering, 90(1):27–
36.
Xiong, J., Tang, L., He, Z., He, J., Liu, Z., Lin, R., and Xi-
ang, J. (2017). Classification of potato external quality
based on svm and pca. International Journal of Per-
formability Engineering, 17(4):469.
Zaborowicz, M., Boniecki, P., Koszela, K., Przybylak, A.,
and Przybył, J. (2017). Application of neural image
analysis in evaluating the quality of greenhouse toma-
toes. Scientia Horticulturae, 218:222–229.
Zhou, L., Chalana, V., and Kim, Y. (1998). Pc-based ma-
chine vision system for real-time computer-aided po-
tato inspection. International journal of imaging sys-
tems and technology, 9(6):423–433.
Deep Learning-based Method for Classifying and Localizing Potato Blemishes
117