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Abstract: We present two innovative ways of enhancing parallel coordinates axes to better understand all variables 

and their interrelationships in high-dimensional datasets. Histogram and circle/ellipse plots based on 

uniform (linear) and non-uniform frequency/density mappings are adopted to visualize distributions of 

numerical and categorical data values. These plots are, particularly, helpful in emphasizing data values of 

low frequencies as well as those with similar frequencies. Color-mapped axis stripes are designed to 

visually connect numerical variables irrespective of their locations (adjacent or nonadjacent axes) in the 

parallel coordinates layout so that correlations can be fully realized in the same display. Distribution plots 

and axis stripes are integrated to further facilitate exploratory analysis of multivariate data with respect to a 

complete variable set. 

1 INTRODUCTION 

An important step in all data-intensive analyses is to 

summarize main characteristics of dataset and to 

uncover its hidden patterns. Data analysts use visual 

exploration techniques to learn about data 

distributions, outliers, missing values, etc. They also 

want to identify variable correlations, which 

measure the nature and extent to which the variables 

are related to each other. There exist numerous 

techniques including histogram, pie chart, scatter 

plot, star plot, parallel coordinates to understand the 

variables themselves and the relationships among 

them. However, these techniques become less 

effective for multivariate data, specially when the 

number of data items/samples and the number of 

dimensions become large. 

Parallel coordinates technique is widely used to 

visualize high-dimensional datasets (e.g., Wegman, 

1990; Inselberg, 1997; Few, 2006; Heinrich and 

Weiskopf, 2013; Janetzko et al., 2016). The main 

strength of this technique is that it treats all variables 

essential and on equal footing by mapping them as 

vertical parallel axes and then graphically represents 

all data samples/observations with respect to these 

axes (Inselberg, 2009). Full information is thus 

rendered thereby enabling us to view all variables 

and compare them with each other. However, 

parallel coordinates plot becomes visually cluttered 

for large high-dimensional dataset (Figure 1). The 

axes are tightly packed and the data polylines cross 

and overlap with each other a lot. This leads to 

serious readability limitation along the axes and 

between the axes. Interactive techniques like 

brushing (Fua, 2000; Siirtola and Raiha, 2006) and 

interval pick (Inselberg, 2009) can improve the 

situation. The axes overlays (Hauser et al., 2002) 

such as box and circle plots can be added to 

understand data distributions on per variable basis 

(Figure 1). The order of axes in parallel coordinates 

plot allows to directly observe the relationships 

between variables mapped to the adjacent axes. 

Judging the relationships among the distant axes is 

difficult as one has to follow the data lines. One may 

eventually identify all correlations by trying out 

many different axis layouts (Heinrich et al., 2012; 

Lu et al., 2016). 

To facilitate visual exploration of variables and 

their interrelationships in high-dimensional datasets, 

we present the ways of enhancing numerical and 

categorical axes in the parallel coordinates setting. 

The first goal is to understand each of many 

variables (attributes or dimensions) of the data. To 

explore how dense or scattered data points are on 

each axis, we further improve the histogram- and 

circle-based distribution plots using non-uniform 

frequency/density mapping techniques. The second 

goal is to reveal correlations among all variables, 

including nonadjacent axes pairs. We create a spe- 

Kaur, G. and Karki, B.
Effective Visual Exploration of Variables and Relationships in Parallel Coordinates Layout.
DOI: 10.5220/0007354602410249
In Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2019), pages 241-249
ISBN: 978-989-758-354-4
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

241



 

Figure 1: Parallel coordinates plot of the automobile dataset containing 25 variables. The circles and box plots are shown on 

categorical and numerical axes, respectively. 

cific color order on one numerical axis and then 

follow how this pattern is carried over to all other 

axes. This way allows us to visually compare the 

color patterns of any two axis stripes irrespective 

their relative positions so that all correlations can be 

identified from the same display.  

2 RELATED WORK 

The parallel coordinates plot (PCP) is a two-

dimensional graphical mapping technique for 

multivariate data and high-dimensional geometry 

(Inselberg, 2009). Over several years, many 

improvements have been made related to its layout, 

data/information representation, and interaction 

(Johansson and Forsell, 2016). Histograms are 

attached to parallel coordinates axes to visualize the 

distributions of data samples for numerical variables 

(Hauser et al., 2002; Ericson et al., 2005; Geng et 

al., 2011). The frequency-based representations can 

solve the issue of overlapping due to similar or 

identical values (Dang et al., 2010). Similarly, one 

can use circles or bubbles for categorical values to 

summarize each variable (Andrienko and 

Andrienko, 2004; Few, 2006; Tuor et al., 2018).  

Axes reordering is an essential part of PCP to 

explore the correlations. One tries different 

permutations of the axes to perform all pairwise 

comparisons (Ferdosi and Roerdink, 2011; Lu et al., 

2016; Peltonen and Lin, 2017). Parallel coordinates 

matrix uses multiple axis-layouts to cover all 

adjacent pairs (Heinrich et al., 2012). Axes order can 

be selected on the basis of network-based interface 

(Zhang et al., 2012) or with Hamiltonian cycles  

(Hurley and Oldford, 2010).  

Due to a two-dimensional layout, PCP can be 

used for other purposes besides finding the 

correlations and clustering. It was used as a user 

interface to explore different parameters for data 

visualization (Tory et al., 2005). Similarly, it was 

used as a product explorer based on parallel 

coordinates to narrow down the product search to a 

small subset by visualizing all attributes (Riehmann, 

2012). In scientific visualization, PCP can help in 

setting parameters to generate different 3D views of 

the selected surface (Gillmann et al., 2018).  

In this paper, we enhance parallel coordinates 

axes based on some of the above-mentioned ideas to 

facilitate visual exploration of all types of variables 

(ordinal, nominal, and continuous numerical) and 

their interrelationships. We demonstrate the essence 

and effectiveness of our proposed schemes by 

working with the automobile dataset consisting of 25 

variables (Dua and Karra Taniskidou, 2017). 

3 ENHANCED DISTRIBUTION 

PLOTS ON AXES 

All k dimensions (variables, irrespective of their 

types) are laid out as vertically parallel axes. The n 

data items in a dataset manifests as n polylines, 

which traverse a series of connected points along the 

k axes. Two or more observations with the same 

value or very similar values are mapped to the same 

location on the corresponding axis. Moreover, their 

polylines may hide beneath the crowdedness created 

by other polylines. It is difficult to read all data 

values and data ranges/sub-ranges on the axes and 
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their polylines in the inter-axial regions. 

Distributions of data samples on per-dimension basis 

are important to effective visualization and 

quantitative analysis of the entire dataset. In this 

section, we describe the design of the frequency 

(density) distribution plots based on the linear and 

non-uniform mappings. These plots are composited 

with the parallel axes to examine variables 

individually and collectively. 

3.1 Histograms for Numerical 
Variables 

We adopt histogram technique for numerical data to 

understand the distribution features like normal 

distribution, skewness, multimodality, outliers, 

missing values, etc (e.g., Ericson et al., 2005). Let 

𝑋D and 𝑌D be the horizontal and vertical extents of 

the parallel coordinates plot/display area for 

mapping k dimensions and rendering n data 

polylines. The uniform axial spacing is:  ∆𝑋D =
𝑋D/(𝑘 − 1). To draw histogram, we split the 

continuous data into equal intervals (referred to as 

bins) and count the data points falling in respective 

bins.  Histogram bars are then drawn perpendicular 

to the corresponding axis so they extend horizontally 

in the inter-axial space on one side or symmetrically 

on both sides of the axis. Having too many bins can 

cause a lot of noise whereas having too few bins can 

hide important details (e.g., localities) about the 

distribution. Appropriate numbers of bins lie in 

the10-100 range. Moreover, these bars must be 

accommodated within the space between axes.  

 

Figure 2: Different frequency mapping schemes for 

histograms. The bars are drawn for two low values (5 and 

10) and two high values (85 and 90) of binned frequency f, 

taking the highest frequency of 100. In the bi-scale 

mapping, the bars for high f values are split into left (L) 

and right (R) parts, each using half range (0.5∆XD). 

Data points which fall into a bin determine the 

length of the corresponding horizontal bar attached 

to the concerned axis (Figure 2). We make the bar 

length vary linearly with the binned frequency (or 

density) in the range 0 to ∆𝑋𝐷: 

𝑙𝑖𝑗 =
𝑓𝑖𝑗

𝑓𝑚𝑎𝑥,𝑗

∆𝑋𝐷  
(1) 

where fij is the number of data values belonging to 

the ith bin (i.e., the bin count) and 𝑓𝑚𝑎𝑥,𝑗 is the 

highest frequency for the dimension j. We can apply 

global scaling for the histogram bars taking 𝑓𝑚𝑎𝑥,𝑗  as 

the highest overall frequency (i.e., the maximum bin 

count considering all numerical axes).   

All continuous numerical variables are displayed 

with the histogram bars, which visually encode data 

value distributions on these variables on the same 

display. If the number of data items becomes large, 

fmax,j can become large too. Bins containing 

relatively few data items may not result in visible 

bars, and it is also difficult to discern small 

differences between the bars (Figure 2). To 

overcome these issues of the linear mapping (Eq. 1), 

we adopt three non-uniform mapping schemes. The 

first approach is to vary the bar length as a square 

root of the binned frequency: 

𝑙𝑖𝑗 = √
𝑓𝑖𝑗

𝑓𝑚𝑎𝑥,𝑗

∆𝑋D  

 

(2) 

For extreme situations, a logarithmic mapping can 

be used as follows:  

𝑙𝑖𝑗 =
log ( 𝑓𝑖𝑗 + 1)

log 𝑓𝑚𝑎𝑥,𝑗

∆𝑋𝐷  (3) 

These non-linear mappings magnify the differences 

between the low frequency bins but suppress the 

differences between long bars (Figure 2). 

Another approach is a bi-scale mapping, which 

divides the horizontal range into two linear regimes, 

the first encoding low bin count and the second 

encoding the rest of high bin count.  If the binned 

frequency is below the threshold (defined as 𝑡𝑓max,𝑗, 

where t lies in the 0-1 range and can be adjusted 

interactively), we evaluate the bar length using: 

𝑙𝑖𝑗
Low =

𝑓𝑖𝑗

𝑡𝑓max,𝑗

∆𝑋𝐷 

2
 (4) 

The histogram bars are drawn attached to the right 

side of the axis, as shown in Figure 2 for f = 5 and 

10. When t = 0.1, the two bars show clearly differing 

lengths. If the bin count is larger than the threshold, 

the bar is split into two parts (left, L and right, R) 
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Figure 3: Histograms showing density distributions of 

continuous numerical values of the automobile dataset 

based on bi-scale frequency mapping. The right bars 

attached the axes display binned frequencies smaller than 

the threshold (t = 0.25). The bars extend to both sides of 

the axes for higher frequencies; the left bars for threshold 

value and the right bars representing the remainders. 

about the axis. For the left portion, 𝑙𝑖𝑗
L =  ∆𝑋D/2 for 

all cases. The remaining value of the binned 

frequency is mapped to the right portion of the bar: 

𝑙𝑖𝑗
R =

𝑓𝑖𝑗 − 𝑡𝑓𝑚𝑎𝑥,𝑗

(1 − 𝑡)𝑓𝑚𝑎𝑥,𝑗

∆𝑋𝐷 

2
 (5) 

Thus, the left and right extents of the bar together 

encode the frequency of the ith bin of variable j when 

𝑓𝑖𝑗  > 𝑡𝑓max,𝑗. In Figure 2, for f = 85 and 90, the left-

side bars have the same length, but the right-side 

bars show clear difference for t = 0.8, which is not 

the case with other mappings. We display bi-scale 

histogram bars for 14 numerical variables of the 

automobile dataset (Figure 3).   

3.2 Circles and Ellipses for Categorical 
Variables 

Circles (bubbles) at specific locations on the axes 

are used to display the relative sizes of different 

categorical values (Few, 2006; Tuor et al., 2018). 

The diameter d of the circle is proportional to the 

number of data items (i.e., the frequency f) 

belonging to a particular categorical value. A linear 

mapping can be expressed as  

𝑑𝑖𝑗 =
𝑓𝑖𝑗

𝑓𝑚𝑎𝑥,𝑗

∆𝑋𝐷  (6) 

Here, dij is the diameter of circle which encodes the 

frequency (fij) of categorical value i on dimension j. 

We can take fmax,j as the largest frequency among all 

categorical values belonging to the variable j. This is 

considered as local scaling. Alternative option is to 

define it with respect to all categorical variables 

(global scaling).  

Generally, categorical variables take few values, 

which are sparsely mapped on the respective axes. 

For cj categorical values for dimension j, the average 

spacing between the data locations on the axis is:  

∆𝑌D,𝑗 = 𝑌D/(𝑐𝑗 − 1), where YD is the length of the 

axis taken to be the same as the vertical extent of the 

display area. For the high-dimensional data, we 

expect ∆𝑌D,𝑗 > ∆𝑋D. To take the advantage of the 

extra space available in the vertical direction, we 

transform circles to ellipses or ovals (Andrienko and 

Andrienko, 2004) by determining the horizontal and 

vertical extents as follows:  

𝑑𝑖𝑗
X = 𝑑𝑖𝑗 and 𝑑𝑖𝑗

Y =
𝑓𝑖𝑗

𝑓max,𝑗
∆𝑌D,𝑗  (7) 

It perhaps makes more sense to use the same vertical 

range ∆𝑌D for all categorical dimensions so we take 

∆𝑌D as an average of all ∆𝑌𝐷,𝑗 values. 

 

Figure 4: Uniform and bi-scale frequency mappings for 

categorical variables. Circles and ellipses for low values (5 

and 10) are much smaller than those for high values (85 

and 90) of frequency f, taking the highest frequency of 

100.  In the bi-scale mapping, the low f values encoded by 

horizontal extent become visually contrasting for small 

threshold (t = 0.1). High f values are split into horizontal 

extent (full ∆XD) and vertical extent with respect to ∆YD 

(different vertical extents for t = 0.8). 

The linear mapping based on circles or ellipses 

(Eq. 6 and 7) helps visually discern the relative 

frequencies of different categorical values on the 

same axis or among different axes (Figure 4). It 

supports the notion that the bigger the circle or 
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ellipse, the larger the frequency (size) of the 

corresponding categorical value. By design, neither 

circles nor ellipses intersect between adjacent axes 

as their horizontal extent cannot exceed ∆𝑋D 

symmetrically about the axis. The overlays, 

however, may overlap in the vertical direction (on 

the same axis).  

For a large dataset, categorical values likely 

show wide frequency ranges, very small to very 

large. The uniform mapping described by Eq. 6 and 

7 may not be effective in assessing the relative sizes 

of categorical values; specially when some 

frequencies are very small (see the cases f = 5 and 10 

in Figure 4). In order to enhance contrasts, we 

propose a non-uniform mapping consisting of two 

linear regimes, one for low values and the other for 

high values. The frequency values up to some user-

defined threshold (𝑡𝑓max,𝑗, where t lies in the 0 to 1 

range) are mapped to the horizontal extent: 

𝑑𝑖𝑗
X =

𝑓𝑖𝑗

𝑡𝑓max,𝑗

∆𝑋𝐷  (8) 

If the frequency is larger than the threshold, we take 

𝑑𝑖𝑗
X =  ∆𝑋D. The remaining value of the frequency is 

encoded in the vertical extent:  

𝑑𝑖𝑗
Y =

𝑓𝑖𝑗 − 𝑡𝑓𝑚𝑎𝑥,𝑗

(1 − 𝑡)𝑓𝑚𝑎𝑥,𝑗

∆𝑌𝐷  (9) 
 

Figure 5: Bi-scale distributions of data samples for 

categorical values of the automobile dataset. The low 

frequency categorical values are encoded in horizontally 

stretched thin ellipses. The frequencies larger than than 

threshold (t = 0.25) are shown by ellipses whose 

horizontal extents represent the equal threshold parts of all 

frequencies and vertical extents represent the remainders. 

Thus, the horizontal and vertical extents of the 

overlay together encode the size of the concerned 

categorical value. If the threshold is chosen to be 

small, say t = 0.1, low frequency values are scaled 

up and can be compared with respect to horizontal 

extents of thin ellipses (Figure 4, f = 5 and 10). If the 

threshold is large, say t = 0.8, high frequency 

categorical values can be compared by viewing 

vertical extents of ellipses (all of which are 

horizontally ∆𝑋Dwide) as illustrated in Figure 4 for f 

= 85 and 90. We display bi-scale ellipses for 11 

categorical variables of the automobile dataset using 

Eq. 8 and 9 for t = 0.25 in Figure 5.  Note that 

ellipses either horizontally stretched (for low-

frequency values such as those for make variable) or 

vertically stretched (for high-frequency values for 

such as door variable). 

Some categorical variable may contain too many 

values or low-frequency values. In such situations, 

two or more values can be merged to create a new 

categorical value, thereby reducing the number of 

circles/ellipses and also making them bigger. For 

example, the make variable consists of many 

categorical values and correspondingly many circles 

or ellipses on the axis. We can merge the make 

values into three values (USA, Japan, and Europe) 

by their originality regions and then call it a new 

origin variable (Figure 5). This can be represented in 

parallel coordinates plot as a new axis. Another 

example is the cylinder variable which contains too 

small values. We can merge 8 and 12-cylinder cars 

together, and 3 and 5-cylinder cars together.  

3.3 Axes Layout 

For dataset containing many variables of different 

types, the layout of the axes in parallel coordinates 

plot can influence the effectiveness of visualization. 

The nominal data values are first mapped to metrics 

scale on their respective axes, which are placed 

together in one part of the plot (the left side). 

Similarly, we map all ordinal (pseudo-continuous) 

variables to the axes group, which is placed next to 

the nominal axes group. The continuous numerical 

variables which are usually visualized to understand 

multivariate relations are placed together on the right 

part. The axes layout thus contains the nominal, 

ordinal and continuous variables from the left to 

right (Figure 1). The nominal axes plot can rather 

serve as a visual query interface. The information 

perceivable from such layout is visually clear. The 

distributions of data values on categorical axes differ 

from those on continuous numerical axes as 

discussed earlier. Also, the polylines connecting data 
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values on successive axes show different order, 

orientation, and spread in between the categorical 

axes than those in between the numerical axes. The 

axes overlays and axis enhancement are designed to 

explore data distributions and correlations associated 

with many variables considering their types. 

4 COLOR MAPPED AXIS 

STRIPES 

In the parallel coordinates plot, the relationships 

between neighbouring dimensions are easy to 

perceive by observing data lines which directly 

connect the adjacent axes. However, judging 

correlations among non-adjacent axes is difficult. 

Multiple axes layouts or interactive axes reordering 

or direct data lines drawing between the non-

adjacent axes can be helpful (Heinrich et al. 2012; 

Lu et al., 2016; Kaur and Karki, 2018). However, 

these approaches involve repetitive tasks, specially 

when there are many variables of interest. Here we 

present an approach based on axes enhancement to 

find multivariate correlations without requiring such 

extra actions. In essence, our approach builds a 

recognizable color order on one numerical 

dimension and then propagates this color pattern to 

all other dimensions. The result is a parallel 

coordinates display containing colorful axes, which 

one glances to quickly identify similar or dissimilar 

axes irrespective of their locations. 

The first step is to select a reference axis from 

among several numerical continuous variables under 

consideration. A variable with uniform distribution 

of data values is a good choice and it can be visually 

identified from the histogram plot. The dataset is 

then partitioned into groups corresponding to 

multiple equal segments or sub-ranges of the 

reference axis. These subsets follow the specific 

order (increasing or decreasing value) of the 

reference dimension and they are assigned distinct 

colors. For instance, we divide the weight axis into 

three equal segments representing low, mid, and 

high values displaying them in blue, green and red, 

respectively (Figure 6). The segments can be also 

displayed using single color with different intensities 

(e.g., gray scale). The reference axis must be divided 

into, at least, two parts (lower half and upper half) 

for this approach to work. Using too many segments  

and, hence, too many distinct colors makes 

deciphering pattern difficult.  

Our axis enhancement approach mainly focuses 

on colouring the axes instead of data polylines. To 

improve visibility, we convert vertical axis lines into 

vertical axis stripes. Each data value is drawn on the 

reference axis stripe with the color of its belonging 

segment. For the reference weight variable, the stripe 

contains blue shades in the low-section, green shades 

in the mid-section, and red shades in the high-section. 

The result is thus a colourful stripe in a blue-green-red 

sequence (Figure 6). The data items are assigned the 

colors of their belonging segments on the reference 

axis and displayed with the same colors on any other 

axis. For instance, the data items with high weight 

values appear in red on all other axis stripes. One can 

easily locate any axis stripes with the same blue-

green-red order. The corresponding variables are 

positively correlated with the reference variable and 

with each other as well.  

There is no need to shuffle the axes around as one 

layout encodes relevant information for all 

correlations on the axis stripes themselves. We 

inspect the color patterns on different axis stripes as 

they provide visual connections between variables. 

The data polylines in the interaxial space are either 

suppressed or shown in gray so as to minimize the 

user distraction away from the colourful stripes 

(Figure 6). If two axis stripes have similar color 

patterns, the corresponding dimensions must be 

positively correlated. If the patterns compare in an 

opposite sense, the two dimensions are negatively 

correlated. Two unrelated axes stripes do not show  

any discernable similarity.  

Figure 6: Color-mapped axis stripes designed for 

numerical variables for the automobile dataset. The 

reference weight (Wt) axis is split into a blue-green-red se-

quence from the low to high-value end. The data polylines 

are shown in gray to provide context. 

We further discuss the visual exploration of 

correlations in the automobile data using weight as 

the reference axis (Figure 6). Any other axis which 
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has blue-green-red sequence from the low end to the 

high end has a positive correlation with the weight 

axis. A glance at the display reveals that multiple 

variables including base, length, width, engine size, 

horsepower, and price show positive correlations 

with weight. For instance, the heavy cars tend to be 

costly and large.  Any axis which carries the red-

green-blue sequence from the bottom to top is 

negatively correlated with the weight axis. The 

variables city mpg and highway mpg are related to 

weight negatively. As expected, heavy cars tend to 

give low mileage per gallon. The colourful axis 

stripes for bore, stroke, ratio, and rpm are not 

comparable with the reference or any other axis 

stripe. So, they appear to be random variables in the 

automobile dataset. We can also compare an axis 

with any other non-reference axis (Figure 6). For 

instance, the axis stripes for city mpg and highway 

mpg show very similar color pattern, confirming 

their strong positive relationship. Both mileage 

variables are negatively correlated with price and 

horsepower.  Thus, we are not limited to compare 

only two specific axes at a time. We can compare 

many more axes at a glance to the parallel 

coordinates display.  

Our approach also helps assess the strength of 

the correlation. In order to verify the visually 

detected correlations in the automobile data, we 

calculate the Pearson correlation coefficients for all 

axis pairs. The coefficients calculated with respect to 

weight are 0.78, 0.88, 0.87, 0.86, 0.76 and 0.84 for 

base, length, width, engine size, horsepower and 

price, respectively, thus confirming our finding of 

positive correlations. The variables city mpg and 

highway mpg take the coefficients of -0.78 and -

0.82, respectively, with respect to weight 

(confirming observed negative correlation). The 

coefficient is 0.97 between two mpg variables. This 

strong positive correlation is consistent with the 

color similarity between the two axis stripes and 

nearly parallel data lines connecting them (Figure 6).  

However, a substantial color mix or overlap on 

the non-reference axes means that correlations are 

either weak or random. It is difficult to correctly 

detect such color mix-up because the data point 

drawn last determines the final color at a particular 

location. For instance, the price axis shows the blue 

segment at the lower end, which is squeezed a lot 

and appears to have some mix-up with green 

segment when compared to the reference weight 

axis.  This means that most price values are low 

(blue data points) and some of them are overwritten 

by the green data points.  In order to reveal such 

overlapping, we blend the colors of two or three data 

values mapping to the same location on the axis 

stripe (Figure 7). For the three-color reference 

sequence considered here, we now see more colors 

on the non-reference axes. The lower end of price 

axis appears in blue (corresponding to low weight 

data points) and then changes to cyan, representing 

overlap between low (blue) and mid (color) weight 

data points. The price axis stripe shows a nearly 

blue-cyan-green-yellow-red sequence (expect some 

scattered colors out of the sequence). The reference 

color pattern is mostly followed by the price axis 

except some overlap occurring between successive 

color sections. The inference of correlations thus 

remains mostly valid.  

 

Figure 7: Color-mapped axis stripes with color blending. 

Cyan, yellow and magenta colors appear for overlapping 

data points of different reference colors. 

5 COMBINING AXIS STRIPES 

AND DISTRIBUTION PLOTS 

In the color-mapped axis enhancement scheme, we 

focus on how the data items from multiple subsets 

defined with respect to the reference variable appear 

on all numerical axes. Each data item is tagged with 

its subset color. Since many data points may fall into 

the same location, displaying the color of the last data 

item or blending the colors of all belonging data items 

does not show information on data frequency or 

density for that location. It is important to explore 

how these data subsets are scattered along each axis 

and how this distribution influences the assessment of 

inter-dimensional relationships. For this, we combine 

the histogram and colourful axes layout.  

We first make the axis stripes ∆𝑋D wide in order 

to accommodate histogram bars. Each bar is divided 

into the same number of sections (with the same color 

sequence assigned) as done for the reference axis. 

Thus, we have color-stacked bars within the axis 

stripe (Figure 8). For the automobile example, each 
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bar contains up to three colors in the blue-green-red 

sequence from the left to right.  The total bar length is 

determined by the frequency (total bin count) 

according to the linear mapping method presented in 

section 3.1. The extents of blue, green and red 

portions depend on the bin counts for their respective 

subsets. If the bin count for a section is zero, the 

corresponding color will not appear in the bar. If all 

three bin counts are non-zero, we will have a stacked 

bar consisting of blue, green and red regions. The 

stacked view thus allows comparison of data points in 

the bin across different subsets. Let’s examine stacked 

histogram in the lowermost part of the price axis. 

Most of the blue data points (low weight values) are 

confined to the lowest price range suggesting that 

light cars are very cheap. The red data points (high-

weight values) are quite spread over the price axis. 

Nevertheless, the heavy cars are more expensive than 

almost all light cars and also more expensive than the 

majority medium-weight cars. With stacked bars 

embedded in the axis stripes, correlation trends can be 

visually realized while additional details are available 

for further assessment and relevance.     

It is also interesting to explore how the data 

subsets with respect to the reference numerical axis 

are shared/distributed among different categorical 

values for each categorical axis.  For instance, one 

might want to know the origin of light cars (low 

weight values) or cheap cars (low price values). For 

this, we visualize data distributions on categorical 

variables using pie chart (Figure 8). We slice each 

circle/ellipse (encoding the frequency of a particular 

categorical value) into multiple parts whose number 

and colors are the same as for the segments created on 

the reference axis. For the automobile example, each 

circle contains up to three parts in the blue-green-red 

clockwise order. The size of a color section is 

proportional to the count of data items belonging to its 

subset for the categorical value the circle or ellipse 

represents. From Figure 8, one can infer that the 

heavy cars (corresponding to the red color section of 

the weight axis) are costly, spacious, two-door 

European cars, but they tend to give low mileages. 

Similarly, very cheap cars (blue histograms at the low 

end of the price axis) have 4-cylinder, low 

horsepower engine and are relatively small and light 

thereby giving high mileages. These cars are mostly 

of Japanese and American origin.  

6 CONCLUSIONS 

To facilitate visual exploration of variables 

themselves and multivariate correlations contained 

in data, we have presented two ways of enhancing 

parallel coordinates axes. First, all axes are enriched 

with the frequency distribution plots based on the 

linear and non-uniform frequency mapping schemes, 

which allow us to visually discern low frequencies 

and also similar frequencies of data values. They are 

implemented as histogram bars for numerical 

variables and as circles/ellipses for categorical 

variables. Second, all numerical axes are converted to 

color-mapped axis stripes to display recognizable 

color patterns on them. Relationships can be judged  

 

Figure 8: All axes parallel coordinates plot using pie charts for 11 categorical variables and stacked bars for 14 numerical 

variables of the automobile dataset. The reference blue-green-red color is defined with respect to the weight (Wt) axis. A pie 

chart or histogram bar may show up to three color sections, the size of each section encoding the share of its belonging 

subset (low-, mid- or high-weight).  Also, the data polylines are shown in gray for the context.   
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among all variables by viewing these stripes in the 

same parallel coordinates layout. These colors are 

also propagated to histograms as stacked bars and 

categorical values as pie charts to further facilitate 

data exploration. By using the automobile dataset 

example consisting of 25 variables of three types 

(ordinal, nominal and continuous numerical), we have 

demonstrated the essence of the proposed axis 

enhancement schemes. More works are needed in 

regard to user evaluation, application to more 

datasets, and interactive visualization. 
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