ference on Machine Learning - Volume 48, ICML’16,
pages 1329–1338. JMLR.org.
Falkner, S., Klein, A., and Hutter, F. (2018). Bohb: Robust
and efficient hyperparameter optimization at scale. In
Proceedings of the 35rd International Conference on
International Conference on Machine Learning.
Graves, A., Mohamed, A., and Hinton, G. E. (2013).
Speech recognition with deep recurrent neural net-
works. CoRR, abs/1303.5778.
Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup,
D., and Meger, D. (2017). Deep reinforcement learn-
ing that matters. CoRR, abs/1709.06560.
Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2011). Se-
quential model-based optimization for general algo-
rithm configuration.
Jones, D. R. (2001). A taxonomy of global optimiza-
tion methods based on response surfaces. Journal of
Global Optimization, 21(4):345–383.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural
networks. In Proceedings of the 25th International
Conference on Neural Information Processing Sys-
tems - Volume 1, NIPS’12, pages 1097–1105, USA.
Curran Associates Inc.
Liessner, R., Dietermann, A., B
¨
aker, B., and L
¨
upkes, K.
(2017). Generation of replacement vehicle speed cy-
cles based on extensive customer data by means of
markov models and threshold accepting. 6.
Liessner, R., Schroer, C., Dietermann, A., and B
¨
aker, B.
(2018). Deep reinforcement learning for advanced
energy management of hybrid electric vehicles. In
Proceedings of the 10th International Conference on
Agents and Artificial Intelligence, ICAART 2018, Vol-
ume 2, Funchal, Madeira, Portugal, January 16-18,
2018., pages 61–72.
Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T.,
Tassa, Y., Silver, D., and Wierstra, D. (2015). Contin-
uous control with deep reinforcement learning. CoRR,
abs/1509.02971.
Lizotte, D. J. (2008). Practical Bayesian Optimization. PhD
thesis, Edmonton, Alta., Canada. AAINR46365.
Mania, H., Guy, A., and Recht, B. (2018). Simple random
search provides a competitive approach to reinforce-
ment learning. CoRR, abs/1803.07055.
Melis, G., Dyer, C., and Blunsom, P. (2017). On the state of
the art of evaluation in neural language models. CoRR,
abs/1707.05589.
Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fid-
jeland, A. K., Ostrovski, G., et al. (2015). Human-
level control through deep reinforcement learning.
Nature, 518(7540):529.
Osborne, M., Garnett, R., and Roberts, S. (2009). Gaussian
processes for global optimization.
Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S.,
Chen, R. Y., Chen, X., Asfour, T., Abbeel, P., and
Andrychowicz, M. (2017). Parameter space noise for
exploration. CoRR, abs/1706.01905.
Rupam Mahmood, A., Korenkevych, D., Vasan, G., Ma, W.,
and Bergstra, J. (2018). Benchmarking Reinforcement
Learning Algorithms on Real-World Robots. ArXiv e-
prints.
Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and
de Freitas, N. (2016). Taking the human out of the
loop: A review of bayesian optimization. In Proceed-
ings of the IEEE.
Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I.,
Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., et al. (2017). Mastering the game of go
without human knowledge. Nature, 550(7676):354.
Smith, S. L., Kindermans, P., and Le, Q. V. (2017). Don’t
decay the learning rate, increase the batch size. CoRR,
abs/1711.00489.
Snoek, J., Larochelle, H., and Adams, R. P. (2012). Prac-
tical bayesian optimization of machine learning algo-
rithms. In Pereira, F., Burges, C. J. C., Bottou, L., and
Weinberger, K. Q., editors, Advances in Neural In-
formation Processing Systems 25, pages 2951–2959.
Curran Associates, Inc.
Snoek, J., Rippel, O., Swersky, K., Satish, R. K. N., Sun-
daram, N., Patwary, M. M. A., Prabhat, and Adams,
R. P. (2015). Scalable bayesian optimization using
deep neural networks. In International Conference on
Machine Learning.
Springenberg, J. T., Klein, A., Falkner, S., and Hutter, F.
(2016). Bayesian optimization with robust bayesian
neural networks. In Proceedings of the 30th Interna-
tional Conference on Neural Information Processing
Systems, NIPS’16, pages 4141–4149, USA. Curran
Associates Inc.
Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence
to sequence learning with neural networks. CoRR,
abs/1409.3215.
Sutton, R. S. and Barto, A. G. (1998). Introduction to Re-
inforcement Learning. MIT Press, Cambridge, MA,
USA, 1st edition.
Sutton, R. S. and Barto, A. G. (2012). Reinforcement Learn-
ing: An Introduction. O’Reilly.
Thornton, C., Hutter, F., Hoos, H. H., and Leyton-Brown,
K. (2012). Auto-weka: Automated selection and
hyper-parameter optimization of classification algo-
rithms. CoRR, abs/1208.3719.
Uhlenbeck, G. E. and Ornstein, L. S. (1930). On the theory
of the brownian motion. Phys. Rev., 36:823–841.
ICAART 2019 - 11th International Conference on Agents and Artificial Intelligence
144