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Abstract: Remote detection of the cardiac pulse has a number of applications in fields of sports and medicine, and can 

be used to determine an individual’s physiological state. Over the years, several papers have proposed a 

number of approaches to extract heart rate (HR) using video imaging.  However, all these approaches have 

employed the Viola-Jones algorithm for face detection. Additionally, these methods usually require the 

subject to be stationary and do not take illumination changes into account. The present research proposes a 

novel framework that employs Faster RCNNs (Region-based Convolutional Neural Networks) for face 

detection, followed by face tracking using the Kanade-Lukas-Tomasi (KLT) algorithm. In addition, the 

present framework recovers the feature points which are lost during extreme head movements of the subject.  

Our method is robust to extreme motion interferences (head movements) and utilizes Recursive Least Square 

(RLS) adaptive filtering methods to tackle interferences caused by illumination variations. The accuracy of 

the model has been tested based on a movie evaluation scenario and the accuracy was estimated on a public 

database MAHNOB-HCI. The output of the performance measure showed that the present model outperforms 

previously proposed methods. 

1 INTRODUCTION 

The measurement of physiological parameters such 

as blood pressure, heart rate (HR) and 

electrocardiogram (ECG) signals have been widely 

utilized in medical diagnosis. The determination of 

heart rate is a critical task which is used to indicate 

the overall health of an individual. Employing 

conventional techniques to measure HR such as 

electrocardiography or optical sensors which 

maintain physical contact with the subject can be 

uncomfortable, since the pressure can become 

inconvenient over time. Fortunately, previous papers 

have demonstrated that it is possible to extract HR by 

using the facial video of the individual (Verkruysse et 

al. 2008, Poh et al. 2010).  

In 2007, Garbey et al. proposed a novel method to 

measure the cardiac pulse by analyzing the thermal 

signals transmitted by the major blood vessels present 

near the surface of the skin (Garbey et al. 2007). The 

change in temperature occurs due to the variation in 

the blood flow. Subsequent papers have overcome 

this drawback by focusing on measuring subtle 

changes in head motions as a result of the person’s 

heart rate (Cennini et al. 2010, Balakrishnan et al. 

2013). These oscillations are a direct result of the 

Newtonian reaction of the head to the influx of blood 

at every heartbeat. One chief drawback of this 

approach is that it typically requires the user to be 

stationary throughout the video. This is not practical 

in a realistic scenario, since the user’s movements 

will include both external motion like head tilt as well 

as internal motions such as smiling and blinking. 

There have been several papers over the years which 

have solved this problem by concentrating on small 

variations in skin color with HR (Poh et al. 2011, 

Kwon et al. 2012, Yu et al. 2013, Mohd et al. 2015, 

Moreno et al. 2015). After performing face detection, 

they have identified a region of interest (ROI) 

constituting roughly 60% of the face and calculated 

the mean pixel value of each colour component 

(RGB) of the ROI for each frame of the video. Next, 

Independent Component Analysis (ICA) was 

employed to obtain the corresponding 

plethysmographic signals from the RGB traces. 

Finally, they applied FFT to transfer these signals into 
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the frequency domain and acquired the frequency of 

the heartbeat. The output showed that the 

plethysmographic signal corresponding to the green 

channel has the maximum power spectral density 

among the three colour channels. 

Although these models are significantly better than 

their motion-based counterparts, they do not consider 

real world challenges such as illumination variations 

into account.  

In 2016, Tulyakov et al. introduced a novel 

optimization framework that estimates HR by using 

local estimates from multiple regions in the face, by 

using a chrominance-based method to relax motion 

constraints (Tulyakov et al. 2016).  

Zhang et al. employed a six channel ICA algorithm to 

simultaneously detect HR and blink (Zhang et al. 

2017). Although the algorithm is marginally tolerant 

to motion artifacts, they have not concretely focused 

on removing illumination artifacts. As a result, on a 

challenging dataset comprising of considerable 

motion as well as illumination artifacts, the accuracy 

of their method diminishes.  

Furthermore, even though a few papers consider 

illumination variations (Li et al. 2014, Lam and Kuno 

2015), it is important to note that all of the afore-

mentioned models employ the Viola-Jones algorithm 

for face detection. To the best of our knowledge, no 

framework has used a different algorithm for face 

detection. 
 

 

Figure 1: Stages of the proposed approach. The feature 

point recovery system is triggered when the number of 

feature points at any given instant falls below a pre-defined 

threshold value. 

The present research focuses on the following 

objectives: 

1. To build a feature point recovery system to get 

back feature points lost during extreme head 

movements. The system monitors the total 

number of feature points at a particular instant 

reapplies face detection and tracking to obtain 

lost points.    

2. To apply Recursive Least Square (RLS) based 

adaptive filtering methods to tackle illumination 

interferences in the video. 

In addition, we have employed Faster RCNNs, as 

opposed to the Viola-Jones face detection algorithm 

used by previous papers. The advantages of 

employing Faster RCNNs have been illustrated in 

Section 3. Although face detection and tracking do not 

form the crux of this work, we have also optimized this 

component of the framework, rather than employing 

the Viola-Jones face detection algorithm. 

The rest of the paper is organized as follows: In Section 

3, we employ Faster RCNNs to perform face detection 

and examine the advantages of using Faster RCNNs 

over the widely used Viola-Jones algorithm. Next, we 

utilize KLT algorithm to track features of the face and 

also introduce a feature point recovery system, thus 

providing greater robustness to motion artifacts. 

Section 4 introduces a novel approach to rectify 

changes in illumination which often compromise the 

accuracy of the HR measurement framework. Section 

5 deals with extracting the heart rate using ICA and 

band limits the frequency in the desired range (0.60 – 

4 Hz) with the help of temporal filters. In Section 6, we 

devise a movie evaluation scenario to verify the 

accuracy of our framework and determine the 

percentage error after comparison with a standard heart 

beat sensor. Additionally, we compare our models with 

previously proposed models and show that our 

framework significantly outperforms previous models. 

Finally, Section 7 draws conclusions. 

2 DATASETS 

In this study, we have used the WIDER face database 

to train our Faster RCNN model (Yang et al. 2016). 

The WIDER dataset consists of 12,880 images 

comprising over 150,000 faces as part of the training 

set. MATLAB 2015a was used under Windows 10 

operating system for the entire implementation of the 

project. 

We have employed two datasets to implement and 

evaluate our framework. The first dataset consists of 18 

videos (9 male and 9 female) recorded by ourselves 

using a standard laptop webcam, with considerable 

motion interferences but no illumination variations. 

Each video has a frame rate of 30 frames per second, 

pixel resolution of 1280 x 720 and a duration of 

approximately 50-60 seconds. The subjects ranged 

from 20-55 years of age and varied in complexion.

 The second dataset is the MAHNOB-HCI 

database (Soleymani et al. 2012), a publically available 

database comprising 527 colour videos of 27 subjects 

(12 males and 15 females). The videos have a 

resolution of 780 x 580 pixels recorded at 61 FPS. 

However, we were able to ultimately test our 

framework on 487 videos since the rest of the other 

videos did not have corresponding ECG readings 

when we downloaded the dataset. 
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3 FACE DETECTION AND 

TRACKING 

Faster RCNNs, proposed by Ren et al. have proven to 

be over 200x faster than conventional neural 

networks, in carrying out tasks such as object 

detection (Ren et al. 2017). While previous papers 

have used the Viola-Jones algorithm for face 

detection, we have deviated from this approach by 

employing Faster RCNNs and demonstrate that our 

face detection framework achieves superior results. 

Faster RCNNs primarily performs face detection in 

two steps. The first step consists of a fully 

convolutional neural network, known as the Region 

Proposal Network (RPN), to extract the features of an 

image to generate object proposals and feed it to the 

subsequent module. Object/Region proposals are 

made based on the probability of detecting an object 

in a particular region. In the second module, these 

region proposals are refined and classified 

accordingly using ROI pooling. Fig. 2 compares the 

face detection results obtained from our Faster RCNN 

model with those obtained from the Viola-Jones face 

detection algorithm.  

Firstly, the Faster RCNN model identifies the face 

even when a portion of the face is hidden from the 

camera. For instance, our model is able to detect the 

face without requiring the full frontal profile of the 

subject, as opposed to the Viola-Jones algorithm, 

which has primarily been trained and tested on frontal 

face datasets.  Secondly, as illustrated in Fig. 2, it is 

possible for the Viola-Jones algorithm to falsely 

detect a face (false positives) if the degree of contrast 

of the background is similar to the degree of contrast 

in the person’s face. We have used our own dataset to 

compare the two face detection methods. 

Next, the KLT feature tracking algorithm is applied 

to extract feature points and track the face of the 

subject. This ensures that our framework is able to 

consistently detect the face and extract HR even when 

there is non-rigid head movement. After finalizing the 

ROI inside the face, the KLT algorithm detects 

feature points inside the ROI. Since KLT can be 

executed quickly, we used the feature points to obtain 

the ROI in the next frame. The feature points of the 

next frame are given by: 𝐹(𝑡 + 1) = 𝐴𝐹(𝑡), where 𝐴 

is the transformation matrix. Next, we apply the 

transformation matrix 𝐴 to compute the boundary 

points of the ROI in the next frame: 𝑅(𝑡 + 1) =
𝐴𝑅(𝑡). Since the feature points are employed to 

compute the coordinates of the ROI in the next frame, 

the loss of feature points will invariably compromise 

the overall accuracy of the framework. 

 

 
Figure 2: The results after performing face detection (from 

left): i) The Faster RCNN framework is able to detect faces 

without requiring the full frontal face. This makes HR 

extraction more robust to motion artifacts; ii) and iii) are the 

ROIs obtained after applying Viola-Jones and Faster 

RCNN respectively, on the same video. There are multiple 

ROIs detected in (ii) which can lead to erroneous results. 

This has been solved in (iii), as shown above. 

 

Figure 3: After applying the Face detection and KLT 

algorithm on the MAHNOB-HCI database. 

3.1 Recovering Lost Feature Tracking 
Points 

An important feature of our framework is the 

recovery of the feature tracking points which are lost 

during extreme head movements. In case of large 

head movements, it is possible for parts of the 

subject’s face to get obscured from the camera. As a 

result, this may lead to the loss of a large number of 

feature points.  

   In order to recover the feature points, we monitor 

the total number of features at any given instant and 

compare it with a threshold value (𝑇1). In case the 

number of tracking points falls below the threshold 

value, the Faster RCNN and the KLT algorithm are 

reapplied, exactly 15 frames after the frame where the 

failure had occurred. We have taken the threshold 

value to be 60% of the total number of feature points. 

However, monitoring the total number of feature 

points is not a sufficient requirement. Although 
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reapplying KLT would produce the same number of 

feature points as before, it would not be possible to 

recover the feature points corresponding to the 

obscured portion of the face, since the new feature 

points would have different locations. Hence, we 

compute the root mean square error (RMSE) of the 

new feature point centroid (𝜇(𝑡)) relative to the old 

centroid (𝜎(𝑡)) using 

 

 

∈ (𝒕) = √
∑ |𝝁(𝒕) − 𝝈(𝒕)|𝟐𝑵

𝒊=𝟏

𝑵
, 

 

(1) 

 

 

where N denotes the number of features points at a 

given frame 𝑡 and ∈(t) denotes the RMSE. Faster 

RCNN and KLT are applied once every 15 frames 

(0.5 seconds) until ∈ (𝑡)  reaches a minima. Fig. 5 

illustrates the choice of RMSE and the corresponding 

frame at which the feature points are recovered. Face 

detection and tracking are not re-implemented 

beyond this frame, as shown in Fig.4. Since Faster 

RCNNs take less than 0.25 seconds per image for face 

detection, our framework can tackle extreme head 

rotations without compromising the overall speed of 

the model. 

 

Figure 4: The RMSE represents the deviation of the new 

centroid 𝜇(𝑡), from the old centroid 𝜎(𝑡) and is given by 

the difference in the number of pixels between 𝜇(𝑡) and 

𝜎(𝑡). The recovery of feature points terminates after the 

minima is achieved – in this case, 180 frames (3 seconds) 

after tracking failure. 

As shown in Figure 5, after recovering lost feature 

points, it is possible to consistently track the subject’s 

face and obtain the ROI despite considerable head 

movement. We found that the plethysmographic 

signal corresponding to the green channel is the most 

prominent among the three colour channels. Hence, 

we have primarily utilized the green channel for HR 

measurement and illustration purposes. 

   

 

Figure 5: Face tracking using the KLT algorithm and 

recovery of tracking points in case of tracking failure. 

Despite getting obscured from the camera, the features in 

left part of the face are recovered by applying Faster RCNN 

and the KLT algorithm again, starting 15 frames after the 

frame of detection failure.  From left to right, the frame 

numbers are 21, 150 and 240 (taken from our dataset). 

4 RECTIFYING ILLUMINATION 

INTERFERENCES 

The mean pixel intensity computed from the ROI 

(𝑥𝑜𝑟𝑖𝑔(t)) in each frame primarily consists of two 

signals. The first signal is a result of variations in 

blood flow caused by the cardiac pulse; the second 

signal is unwanted illumination variations that occur 

during the recording (Parra 2007). It is reasonable to 

assume that these two interferences are additive: 

 

 𝑥𝑜𝑟𝑖𝑔(𝑡) = 𝑆(𝑡) + 𝑁(𝑡), (2) 

where S(t) denotes the original green channel 

variations caused by the cardiac pulse, and N(t) 

denotes the green channel variations caused by 

illumination variation as shown in Fig. 6.  

Our objective is to eliminate the noise signal N(t) 

and obtain the best possible approximation of the 

signal S(t). Since the lighting sources are practically 

the same for the ROI and the background, we assume 

that the associated illumination changes for the ROI 

and the background would be the same as well (Basri 

and Jacobs 2003). Hence, we have employed the 

mean channel intensity of the background (𝑥𝑏𝑔(𝑡)) to 

remove the noise signal N(t).  
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We have assumed N(t) to vary linearly with 

𝑥𝑏𝑔(𝑡): 

 

 𝑁(𝑡) ≈ 𝐾𝑥𝑏𝑔(𝑡). (3) 

   

 
 

 

Figure 6: The top curve shows the normalized mean green 

pixel intensity of the ROI before rectifying illumination 

interferences. The curve below is a plot of the normalized 

mean green channel intensity of the background. The spike 

in the intensity is a result of illumination interference. 

However, since we only have an approximation of the 

noise signal N(t), the illumination rectified signal 

𝑥𝑟𝑒𝑐𝑡(t) will invariably be a close approximation of 

S(t), and is given by 

 

 𝑥𝑟𝑒𝑐𝑡(𝑡) = 𝑆(𝑡) + 𝐸(𝑡), (4) 

 

where  

 

 E(t) = 𝑁(𝑡) −  𝐾𝑥𝑏𝑔(𝑡), (5) 

is the deviation of the illumination rectified signal 

from S(t). In order to compute the best possible 

approximation of 𝑥𝑟𝑒𝑐𝑡(𝑡), we have utilized the 

Recursive Least Squares (RLS) adaptive filter to 

calculate the ideal value of K that minimizes the error. 

The RLS adaptive filter is an algorithm that 

recursively computes the filter coefficients that 

minimize a linear cost function related to the input 

signal.  

Let 𝐾(𝑡) be the estimated filter weight for each point 

time point 𝑡. After initializing the weights, the RLS 

filter updates the filter weights as 

 

𝐾(𝑡 + 1) = 𝐾(𝑡) + 𝐶−1(𝑡)𝑥𝑟𝑒𝑐𝑡(𝑡)𝑥𝑏𝑔(𝑡) (6) 

 

Here, 𝐶(𝑡) is the autocorrelation matrix given by 

 

 𝐶(𝑡) =  ∑ 𝑥𝑏𝑔(𝑡)𝑥𝑏𝑔
𝑇 (𝑡)𝑡

𝑖=0 𝛼𝑡−1,    (7) 

 

where 𝑥𝑏𝑔
𝑇 (𝑡) is the transpose of 𝑥𝑏𝑔(𝑡) and 𝛼 is a 

positive constant smaller than 1. The RLS filter will 

continue to run its iterations until K(t) converges to a 

suitable value that minimizes the error/deviation 

𝐸(𝑡).  

We have applied the Local Region Based Active 

Contour (LRBAC) method to segment the 

background region of each frame (Lankton and 

Tannenbaum 2008). Since LRBAC is a region-based 

approach, it is insensitive to image noise, as opposed 

to edge-based methods such as the Distance 

Regularized Level Set Evolution (DRLSE) method. 

The mean green pixel intensity of the background is 

computed for every frame and is used to acquire the 

illumination rectified signal 𝑥𝑟𝑒𝑐𝑡(𝑡) as shown in 

eqns. 4 and 5. 

 
 

 

Figure 7: The curve on the left is a plot of the normalized 

illumination rectified signal while the curve on the right is 

the ground truth normalized mean green pixel intensity. The 

ground truth plot is obtained from the recording of the same 

scene in conditions without any illumination variations.  

It can be seen that the illumination rectified signal that 

we have obtained is almost identical to the ground 

truth signal.   

5 RESULTS 

The mean RGB values in the ROI are calculated for 

each frame of the video. The ROI is then separated 

into its three constituent RGB channels and the mean 

value of each raw trace is computed. Each raw trace 

is then normalized in order to have zero mean and unit 

standard deviation. This helps us to achieve results 
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which are independent of the complexion of the subject 

since all three traces will now have the same statistical 

metrics.  

We used FastICA 2.5 on Matlab 2015a to obtain the 

three source signals corresponding to each normalized 

traces. We found that the plethysmographic (PG) 

signal corresponding to the green trace has the most 

prominent peak in the frequency spectrum. Let the PG 

signals corresponding to the red, green and blue traces 

be 𝑠1(𝑡), 𝑠2(𝑡) 𝑎𝑛𝑑 𝑠3(𝑡) respectively. For 𝑖 = 1,2,3 

 

 𝑠𝑖(𝑡) = 𝐴−1𝑥𝑖(𝑡), (8) 

 

where A is a 3x3 matrix. In order to find each source 

signal 𝑠𝑖(𝑡), ICA finds an approximation of A-1 that 

minimizes the gaussianity of each source signal.This 

ensures that the obtained source signals are statistically 

independent (Breuer and Major 1983).   

Finally, The power spectra of the PG signals is 

obtained in order to determine the most prominent 

frequency component. Next, several temporal filters 

are applied to exclude frequencies outside the desired 

range. Since, the normal heart rate ranges from 40 bpm 

to 240 bpm, the desired frequency range was set to [0.6, 

4] Hz. Finally, the heart rate of the video is calculated 

as 𝐻𝑅 = 60𝑓𝐻𝑅 bpm. The prominent peak in the 

power spectrum (1.27 Hz) corresponds to 76 bpm. 

 

Figure 8: The power spectra displaying the source signals 

corresponding to the red, green and blue components of the 

video. The red, green and blue plots correspond to s1(t),
s2(t) and s3(t) respectively. 

 

 

 

 

 

 

 

 

 

 

 

6 PERFORMANCE ANALYSIS 

OF THE PROPOSED 

FRAMEWORK 

6.1 Testing the Framework 

We have devised an experiment to evaluate the 

robustness and accuracy of our framework in realistic 

conditions. We record the facial video of an individual 

for approximately 10 minutes while the individual is 

watching a horror movie. The settings we have 

installed are the same as those used for recording all 

previous videos (mentioned in Section 1). We have 

also monitored the heart rate by attaching a heart rate 

sensor to the user in order to compare our results with 

the ground truth results and measure the percentage 

error of our framework.    

From the figure, it can be observed that the HR of the 

subject changes with time depending upon the scene 

that the subject is watching. To make it more 

interesting, we have chosen scenes which are likely to 

elicit a higher HR from the subject. It is clear from the 

plot that the HR measured by our framework is in 

agreement with the ground truth data, barring slight 

differences. The HR computed has a mean error 

percentage of 1.71%. 

 
Figure 9: The heart rate of the subject while watching the 

horror movie ‘The Conjuring’. Specific scenes from the 

movie have been chosen in order to obtain a higher HR and 

test the accuracy of our framework. 

6.2 Datasets for Error Analysis 

In order to ascertain the efficiency of our method, we 

implement our framework as well as previously 

proposed methods on two different sets of videos we 

have collected, since previous papers have not made 

their datasets public. The first dataset contains 18 

videos having an average duration of 50-70 seconds, 

collected from a group of 18 subjects (9 male and 9 

female). We have recorded videos with considerably 

high motion artifacts (head movements > 60 degrees), 
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but very few illumination interferences. For the 

second set of videos, we have used the MAHNOB-

HCI database (Soleymani et al. 2012), in which we 

tested our framework on a set of 487 colour videos of 

27 subjects (12 males and 15 females). The videos 

have a resolution of 780 x 580 pixels recorded at 61 

FPS. As a result, our implementation of Li2014 and 

SAMC has a different result than the original papers, 

since both SAMC2016 and Li2014 were tested on all 

527 videos of the MAHNOB-HCI dataset. 

6.3 Determination of Mean Error and 
RMSE 

A Polar H10 HR sensor is used to monitor and 

provide the ground truth HR. We have chosen four 

colour-based methods (Poh2011 (Poh et al. 2011), 

Kwon2012 (Kwon et al. 2012), Li2014 (Li et al. 

2014) and Zhang2017)  and one motion-based 

method (Balakrishnan2013 (Balakrishnan et al. 

2013)) for comparison. Since every paper had 

different statistical measures to evaluate the 

performance of their model, we have employed four 

widely used metrics to measure the performance of 

each framework: the mean absolute error (𝜇𝑒𝑟𝑟𝑜𝑟), the 

root mean-square error (RMSE), percentage of 

Absolute error less than 5 bpm and the correlation 

coefficient r.   

The results have been tabulated below. Table 1 

illustrates the results that have been obtained on our 

dataset, which consists of challenging facial videos 

recorded with considerable motion artifacts, but no 

illumination variations. 

Table 1: Performance of previously proposed frameworks 

on our database (extreme motion interferences without 

illumination variations). 

Framework 𝜇𝑒𝑟𝑟𝑜𝑟  RMSE(%) % Absolute 

Error<5bpm  
r 

Poh2011 9.1 15.9 56.4 0.39* 

Kwon2012 8.8 15.6 46.1 0.15 

Bala2013 11.5 18.2 33.2 0.06 

Li2014 7.2 11.5 71.3 0.78* 

Zhang2017 7.6 11.1 72.1 0.68* 

SAMC2016 4.7 9.2 76.2 0.85* 

Ours 3.4 6.4 77.9 0.89* 

* - Indicates that the correlation is significant at p = 0.01 

From Table 1, it can be seen that under ideal 

illumination conditions, all of the proposed methods 

perform satisfactorily. The higher error rate in 

Balakrishnan2013 (here, Bala2013), a motion-based 

method, arises due to large head movements in the 

video. We have included extreme motion variations 

such as head rotations higher than 60 degrees. Since 

our framework is able to recover feature tracking 

points which are lost during the subject’s head 

movement, our model outperforms other recently 

proposed models and is robust to head rotations of 

more than 60 degrees. As a result, our mean 

percentage error and RMSE are lower than Li2014 

and SAMC2016.     

Table 2: Performance on the MAHNOB-HCI dataset 

(consists of motion as well as illumination interferences). 

Framework 𝜇𝑒𝑟𝑟𝑜𝑟  RMSE(%) % Absolute 

Error<5bpm  
r 

Poh2011 13.5 21.1 46.2 0.32* 

Kwon2012 24.1 25.5 41.2 0.21 

Bala2013 16.1 22.9 39.1 0.26 

Li2014 7.8 15 68.1 0.72* 

Zhang2017 8.7 15.7 63.2 0.65* 

SAMC2016 5.1 7.2 73.2 0.75* 

Ours  

(i)+(iv) 

28.7 32.2 33.8 0.41 

Ours 

(i)+(ii)+(iii)

+(iv) 

4.7 6.8 78.3 0.79* 

* - Indicates that the correlation is significant at p = 0.01 

Table 2 shows the results of implementing the above 

models on the MAHNOB-HCI dataset.  

Here, (i), (ii), (ii) and (iv) represent Faster 

RCNN+feature tracking, recovery of feature tracking 

points, illumination rectification and temporal 

filtering respectively. 

 As it can be seen, our method provides the best 

results out of all the afore-mentioned algorithms. Our 

framework significantly outperforms Poh2011, 

Kwon2012 and Balakrishnan2013 since these models 

do not account for changes in illumination. Our model 

also outperforms Li2014, SAMC2016 and 

Zhang2017. This is due to the recovery of feature 

tracking points in our model, as a result of which the 

HR is accurately measured despite large head 

rotations by the subject. Moreover, Zhang2017 does 

not account for illumination variations as a result of 

which the accuracy is diminished on the MAHNOB-

HCI dataset. 

7 CONCLUSIONS 

Over the years, there have been several methods to 
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extract HR from facial video such as motion based 

methods, color-based methods as well as approaches 

that have employed thermal imaging techniques. To 

the best of our knowledge, all of the previously 

proposed approaches have employed the Viola-Jones 

algorithm for face detection. We have deviated from 

this approach and employed Faster RCNNs for face 

detection. The Faster RCNN employed in the present 

study was able to detect faces without requiring the full 

frontal profile of the face, thus making it more robust. 

Secondly, depending upon nature of the background, 

the Viola-Jones algorithm may detect multiple ROIs, 

which may lead to confusion. This is not the case with 

our face detection algorithm, since it is independent of 

the background in the video.  

An important feature of our framework is the ability to 

recover feature points which may have been lost during 

extreme head rotations. This makes our model robust 

to extreme motion artifacts and is able to measure HR 

even the subject performs a complete rotation (360 

degrees). Next, while some of these papers have 

reduced the problem of head movements, all of them 

have a degradation in performance in the presence of 

illumination interferences. In our framework, we have 

accounted for this artifact by using RLS adaptive 

filtering methods and the local region-based active 

contour method (LRBAC) to segment the background 

and remove the noise signal in the video arising from 

changes in illumination.  

We also performed an experiment where we monitored 

a subject while watching specific scenes of a horror 

movie for a period of 5-10 minutes, and extract the HR 

of the subject. The average HR of approximately every 

20s is plotted and compared with the ground truth data. 

Upon comparison with the polar H10 HR monitoring 

sensor, we found that our framework achieved a mean 

error percentage of 1.71%.  

Moreover, we also implemented previously proposed 

approaches on our database of 18 videos and found that 

our framework outperformed the previous four 

methods and attained a root mean-square error of 

8.28% on the MAHNOB-HCI database.  

One principle source of error might be the difference 

in sampling rates of the HR sensor and our webcam. 

While our webcam had a sampling rate close to 30 Hz, 

the H10 polar HR sensor had a higher sampling rate of 

256 Hz. Also, in case of extremely low illumination 

where the face is not visible, it would be useful to 

combine motion and region-based methods to better 

solve motion and illumination interferences. 

A direction for future research would be to focus on the 

integration of motion as well as colour-based methods 

to estimate HR. The complementary nature of these 

methods would enable a more robust approach to 

simultaneously tackle motion and illumination artifacts 

in the video.  

REFERENCES 

Balakrishnan, G., Durand, F., and Guttag, J., 2013. 

Detecting pulse from head motions in video. In: 

Proceedings of the IEEE Computer Society Conference 

on Computer Vision and Pattern Recognition. 3430–

3437. 

Basri, R. and Jacobs, D.W., 2003. Lambertian reflectance 

and linear subspaces. IEEE Transactions on Pattern 

Analysis and Machine Intelligence, 25 (2), 218–233. 

Breuer, P. and Major, P., 1983. Central limit theorems for 

non-linear functionals of Gaussian fields. Journal of 

Multivariate Analysis, 13 (3), 425–441. 

Cennini, G., Arguel, J., Akşit, K., and van Leest, A., 2010. 

Heart rate monitoring via remote 

photoplethysmography with motion artifacts reduction. 

Optics Express, 18 (5), 4867. 

Garbey, M., Sun, N., Merla, A., and Pavlidis, I., 2007. 

Contact-free measurement of cardiac pulse based on the 

analysis of thermal imagery. IEEE Transactions on 

Biomedical Engineering, 54 (8), 1418–1426. 

Kwon, S., Kim, H., and Park, K.S., 2012. Validation of 

heart rate extraction using video imaging on a built-in 

camera system of a smartphone. In: Proceedings of the 

Annual International Conference of the IEEE 

Engineering in Medicine and Biology Society, EMBS. 

2174–2177. 

Lam, A. and Kuno, Y., 2015. Robust heart rate 

measurement from video using select random patches. 

In: Proceedings of the IEEE International Conference 

on Computer Vision. 3640–3648. 

Lankton, S. and Tannenbaum, A., 2008. Localizing region-

based active contours. IEEE Transactions on Image 

Processing, 17 (11), 2029–2039. 

Li, X., Chen, J., Zhao, G., and Pietikäinen, M., 2014. 

Remote heart rate measurement from face videos under 

realistic situations. In: Proceedings of the IEEE 

Computer Society Conference on Computer Vision and 

Pattern Recognition. 4264–4271. 

Mohd, M.N.H., Kashima, M., Sato, K., and Watanabe, M., 

2015. A non-invasive facial visual-infrared stereo 

vision based measurement as an alternative for 

physiological measurement. In: Lecture Notes in 

Computer Science (including subseries Lecture Notes 

in Artificial Intelligence and Lecture Notes in 

Bioinformatics). 684–697. 

Moreno, J., Ramos-Castro, J., Movellan, J., Parrado, E., 

Rodas, G., and Capdevila, L., 2015. Facial video-based 

photoplethysmography to detect HRV at rest. 

International Journal of Sports Medicine, 36 (6), 474–

480. 

Parra, E.J., 2007. Human pigmentation variation: evolution, 

genetic basis, and implications for public health. 

American journal of physical anthropology. 

ICAART 2019 - 11th International Conference on Agents and Artificial Intelligence

152



 

Poh, M.-Z., McDuff, D.J., and Picard, R.W., 2010. Non-

contact, automated cardiac pulse measurements using 

video imaging and blind source separation. Optics 

Express, 18 (10), 10762. 

Poh, M.Z., McDuff, D.J., and Picard, R.W., 2011. 

Advancements in noncontact, multiparameter 

physiological measurements using a webcam. IEEE 

Transactions on Biomedical Engineering, 58 (1), 7–11. 

Ren, S., He, K., Girshick, R., and Sun, J., 2017. Faster R-

CNN: Towards Real-Time Object Detection with. IEEE 

Transactions on Pattern Analysis and Machine 

Intelligence, 39 (6), 1137–1149. 

Soleymani, M., Lichtenauer, J., Pun, T., and Pantic, M., 

2012. A multimodal database for affect recognition and 

implicit tagging. IEEE Transactions on Affective 

Computing, 3 (1), 42–55. 

Tulyakov, S., Alameda-Pineda, X., Ricci, E., Yin, L., Cohn, 

J.F., and Sebe, N., 2016. Self-Adaptive Matrix 

Completion for Heart Rate Estimation from Face 

Videos under Realistic Conditions. In: 2016 IEEE 

Conference on Computer Vision and Pattern 

Recognition (CVPR). 

Verkruysse, W., Svaasand, L.O., and Nelson, J.S., 2008. 

Remote plethysmographic imaging using ambient light. 

Optics Express, 16 (26), 21434. 

Yang, S., Luo, P., Loy, C.C., and Tang, X., 2016. WIDER 

FACE: A face detection benchmark. In: Proceedings of 

the IEEE Computer Society Conference on Computer 

Vision and Pattern Recognition. 5525–5533. 

Yu, Y.P., Kwan, B.H., Lim, C.L., Wong, S.L., and 

Raveendran, P., 2013. Video-based heart rate 

measurement using short-time Fourier transform. In: 

2013 International Symposium on Intelligent Signal 

Processing and Communication Systems. 704–707. 

Zhang, C., Wu, X., Zhang, L., He, X., and Lv, Z., 2017. 

Simultaneous detection of blink and heart rate using 

multi-channel ICA from smart phone videos. 

Biomedical Signal Processing and Control, 33, 189–

200. 

 

Estimation of the Cardiac Pulse from Facial Video in Realistic Conditions

153


