experiments, this problem can be solved by
increasing the size of the training data with the
mirror face images. Since the process of sparse
coding is very time-consuming, we will work on
improving the efficiency of the proposed method in
the future work.
ACKNOWLEDGEMENTS
This work is supported by the National Key R&D
Program of China (Grants No. 2017YFE0111900,
2018YFB1003205), and the Lanzhou Talents
Program for Innovation and Entrepreneurship
(Grants No. 2016-RC-93).
REFERENCES
Turk, M., Pentland, A., 1991. Eigenfaces for recognition.
Journal of Cognitive Neurosicence, 3(1): 71-86.
Zhang, D., Chen, S., and Zhou, Z. H., 2005. A new face
recognition method based on SVD perturbation for
single example image per person. Applied
Mathematics & Computation, 163(2): 895-907.
Maksimov, R., Gaidukovs, S., Kalnins, M., Zicans, J., and
Plume, E., 2006. A human face recognition method
based on modular 2dpca. Journal of Image &
Graphics, 42(1): 45-54.
Liu, Q., Huang, R., Lu, H., and Ma, S., 2001. Face
recognition using kernel based fisher discriminant
analysis. In IEEE International Conference on
Automatic Face and Gesture Recognition, 197.
Ghiass, R. S., Arandjelovic, O., Bendada, H., and
Maldague, X., 2013. Infrared face recognition: a
literature review. Computer Science, 1-10.
Chen, Y., Su, J., 2017. Sparse embedded dictionary
learning on face recognition. Pattern Recognition, 64:
51-59.
Wright, J., Ma, Y., Mairal, J., Sapiro, G., Huang, T. S.,
and Yan, S., 2010. Sparse representation for computer
vision and pattern recognition. Proceedings of the
IEEE, 98(6): 1031-1044.
Wright, J., Yang, A. Y., Sastry, S. S., and Ma, Y., 2009.
Robust face recognition via sparse representation.
IEEE Trans Pattern Anal Mach Intell, 31(2): 210-227.
Zhang, L., Yang, M., Feng, Z., and Zhang, D., 2010. On
the dimensionality reduction for sparse representation
based face recognition. International Conference on
Pattern Recognition, 1237-1240.
Elad, M., Aharon, M., 2006. Image denoising via sparse
and redundant representations over learned
dictionaries. IEEE Transactions on Image Processing,
15(12): 3736-3745.
Mairal, J., Elad, M., and Sapiro, G., 2007. Sparse
representation for color image restoration. IEEE
Transactions on Image Processing, 17(1): 53-69.
Lu, J., Liong, V. E., Wang, G., and Moulin, P., 2015. Joint
feature learning for face recognition. IEEE
Transactions on Information Forensics & Security,
10(7): 1371-1383.
Zhou, W., 2012. Sparse representation for face recognition
based on discriminative low-rank dictionary learning.
In IEEE Conference on Computer Vision and Pattern
Recognition, 157: 2586-2593.
Yang, M., Zhang, L., Yang, J., and Zhang, D., 2011a.
Robust sparse coding for face recognition. In
International Conference on Pattern Recognition,
625-632.
Aharon, M., Elad, M., and Bruckstein, A., 2006. K-SVD:
An algorithm for designing overcomplete dictionaries
for sparse representation. In IEEE Transactions on
signal processing, 54(11), 4311.
Tibshirani, R., 2011. Regression shrinkage and selection
via the lasso: a retrospective. Journal of the Royal
Statistical Society, 73(3): 273-282.
Yang, M., Zhang L., Feng, X., and Zhang, D., 2011b.
Fisher discrimination dictionary learning for sparse
representation. In
IEEE International Conference on
Computer Vision, 24(4): 543-550.
Bengio, Y., Lamblin, P., Dan, P., and Larochelle, H., 2007.
Greedy layer-wise training of deep networks.
Advances in Neural Information Processing Systems,
19: 153-160.
Learnedmiller, E., Lee, H., and Huang, G. B., 2012.
Learning hierarchical representations for face
verification with convolutional deep belief networks.
In IEEE Conference on Computer Vision and Pattern
Recognition, 157: 2518-2525.
Chan, T. H., Jia, K., Gao, S., Lu, J., Zeng, Z., and Ma, Y.,
2015. PCANet: a simple deep learning baseline for
image classification? IEEE Transactions on Image
Processing, 24(12): 5017-5032.
Koh, K., Kim, S. J., and Boyd, S., 2007. An interior-point
method for large-scale l1-regularized logistic
regression.
Gross, R., Matthews, I., and Baker, S., 2008. “Multi-pie,”
In IEEE Conference on Automatic Face and Gesture
Recognition.
Martinez, A. M., 1998. The AR face database. Cvc
Technical Report, 24.
Georghiades, A. S., Belhumeur, P. N., and Kriegman, D. J.,
2001. From few to many: illumination cone models for
face recognition under variable lighting and pose.
IEEE Transactions on Pattern Analysis & Machine
Intelligence, 23(6): 643-660.
Phillips, P. J., Moon, H., Rizvi, S. A., and Rauss, P. J.,
2000. The FERET evaluation methodology for face-
recognition algorithms. IEEE Transactions on Pattern
Analysis & Machine Intelligence, 22(10): 1090-1104.
Xu, Y., Li, Z., Zhang, B., Yang, J., and You, J., 2017.
Sample diversity, representation effectiveness and
robust dictionary learning for face recognition.
Information Sciences, 375(C): 171-182.