REFERENCES
Cisco, 2017. Cisco Visual Networking Index (VNI) Update
Global Mobile Data Traffic Forecast, 2016-2021.
[online] Available at:
http://www.cisco.com/c/en/us/solutions/collateral/serv
ice-provider/visual-networking-index-vni/mobile-
white-paper-c11-520862.html [Accessed 9 Sep. 2018].
Wang, C., Haider, F., Gao, X., You, X., Yang, Y., Yuan,
D., Aggoune, H., Haas, H., Fletcher, S., Hepsaydir, E.,
2014. Cellular Architecture and Key Technologies for
5G Wireless Communication Networks. In: IEEE
Comm.
Ibrahim, A., A., Kpochi, K., P. Smith, E., J., 2018. Energy
Consumption Assessment of Mobile Cellular Networks.
American Journal of Engineering Research (AJER),
vol.7, Issue-3.
Haas, H., Chen, C., O’Brien, D., 2017. A Guide to Wireless
Networking by Light. Elsevier Journal of Progress in
Quantum Electronics, no.55, pp.88-111.
Serafimovski, N., Lacroix, R., Perrufel, M., Leroux, S.,
Clement, S., Kundu, N., Chiaroni, D., Patwardhan, G.,
Myles, A., Jurczak, C., Fleschen, M., Ragusky, M.,
Jungnickel, V., Ktenas, D., Haas, H., 2018. Light
Communications for Wireless Local Area Networking.
IEEE 5G Tech focus: vol. 2, no.2.
Commscope, 2015. Indoor Wireless in Mobile Society:
Research Reveals Gap Between Expectations of
Wireless Consumers and Those Who Design and
Manage Buildings. [online] Available at:
https://www.commscope.com/NewsCenter/PressRelea
ses/Indoor-Wireless-in-Mobile-Society-Research-
Reveals-Gap-Between-Expectations-Of-Wireless-
Consumers-and-Those-Who-Design-and-Manage-
Buildings/ [Accessed 10 Sep. 2018].
Tsonev, D., Videv, S., Haas, H., 2015. Towards a 100 Gb/s
visible light wireless access network. Opt. Exp., vol. 23,
no. 2, pp. 1627-1637.
Chandhar, P., Das, S., 2014. Area spectral efficiency of Co-
Channel deployed OFDMA femtocell networks. IEEE
Trans, Wireless Commun., vol. 13, no.7, pp. 3524-
3538.
Stevanovic, I., 2017. Light Fidelity (LiFi). OFCOM-
Report.
Chowdhury, M., Z., Hossan, M., T., Islam, A., Jang, Y., M.,
2018. A Comparative Survey of Optical Wireless
Technologies: Architectures and Applications. IEEE
Access: vol. 6.
Manyika, J., 2015. Unlocking the potential of the Internet
of Things. [online] McKinsey Global Institute.
Available at: http://www.mckinsey.com/business-
functions/digital-mckinsey/our-insights/the-internet-
of-things-the-value-of-digitizing-the-physical-world
[Accessed 2 Sep. 2018].
Pau, G., Chaudet, C., Zhao, D., Colotta, M., 2018. Next
Generation Wireless Technologies for Internet of
Things. Sensors 2018, 18, 221.
Ghamari, M., Arora, H., Sherratt, R., S., Harwin, W., 2015.
Comparison of Low-Power Wireless Communication
Technologies for Wearable Health-Monitoring
Applications. International Conference on Computer,
Communications, and Control Technology (I4CT).
Ali, H., A., E., A., Hussein, M., A., 2016. Wireless
Telecommunication Technologies: Li-Fi Vs. Wi-Max
Vs. Wi-Fi Vs. Zigbee Vs. Bluetooth. International
Journal of Recent Trends in Engineering & Research,
ISSN (Online): 2455-1457.
Magrin, D., 2016. Network level performances of a LoRa
system. Universita degli Studi di Padova.
Bhalerao, M., V., Sonavane, S., S., Kumar, V., 2013. A
Survey of Wireless Communication Using Visible Light.
International Journal of Advances in Engineering &
Technology, vol. 15, Issue 2, pp. 188-197.
IEEE, 2011. P802.15.7 – Standard for Short-Range
Wireless Optical Communication.
Khan, L., 2016. Visible light communication: Applications,
architecture, standardization and research challenges.
Elsevier: Digital Communications and Networks.
Mariappan, V., Cha, J., 2018. IEEE802.15.7m OWC PHY
Specification Overview. IEEE COMSOC MMTC
Communications: vol. 13, no.3, pp. 25-28.
Cha, J., Lee, M., Mariappan, V., 2018. VTASC-Light based
flexible Multi-Dimensional Modulation Technique for
OWC. IEEE COMSOC MMTC Communications: vol.
13, no.3, pp. 39-43.
Li, Q., Baykas, T., Jungnickel, V., 2018. IEEE 802.15.13
Multi Giga bit/sec Optical Wireless Communication
Project. IEEE COMSOC MMTC Communications:
vol. 13, no.3, pp. 34-38.
Blinowski, G., 2015. Security Issues in Visible Light
Communication Systems. International Federation of
Automatic Control (IFAC-PapersOnLine) 48-4, pp.
234-239.
Rohner, C., Raza, S., Puccinelli, D., Voigt, T., 2015.
Security in Visible Light Communication: Novel
Challenges and Opportunities. Sensor & Transducers,
Vol. 192, Issue 9, pp. 9-15.
Mostafa, A., 2017. Physical-Layer Security for Visible-
Light Communication Systems. University of British
Columbia.
Marin-Garcia, I., Guerra, V., Perez-Jimenez, R., 2017.
Study and Validation of Eavesdropping Scenarios over
a Visible Light Communication Channel, Sensors 2017,
17, 2678.
Wang, J., Liu, C., Wang, J., Wu, Y., Lin, M., Cheng, J.,
2018. Physical-layer Security for Indoor Visible Light
Communications: Secrecy Capacity Analysis.
Marketsandmarkets, 2018. Free Space Optics (FSO) and
Visible Light Communication (VLC) Market – Global
Forecast to 2023. [online] Available at:
https://www.marketsandmarkets.com/Market-
Report/visible-light-communication-market-946.html
[Accessed 3 Sep. 2018].
General lighting market volume outlook from 2011 to 2020,
a. 2018. General lighting market trend by application
2020 | Forecast. [online] Statista. Available at:
https://www.statista.com/statistics/216387/general-
lighting-market-trend-by-application/ [Accessed 4 Sep.
2018].
Global lighting market: estimated LED penetration 2020 |
Light Fidelity (Li-Fi): Security and Market Sector
161