ing adversarial attacks, it is basically an add-on to
the deep neural networks so that it can collaborate
with other defence like adversarial training and gra-
dient masking (Papernot et al., 2016b). We will focus
on this type of defence to make it applicable in real-
world scenes.
ACKNOWLEDGEMENTS
This work is supported by the National Natural
Science Foundation of China(61571290, 61831007,
61431008), National Key Research and Devel-
opment Program of China (2017YFB0802900,
2017YFB0802300, 2018YFB0803503), Shanghai
Municipal Science and Technology Project under
grant (16511102605, 16DZ1200702), NSF grants
1652669 and 1539047.
REFERENCES
Carlini, N. and Wagner, D. (2017). Towards evaluating the
robustness of neural networks. In Security and Pri-
vacy (SP), 2017 IEEE Symposium on, pages 39–57.
IEEE.
Goodfellow, I. J., Shlens, J., and Szegedy, C. (2014). Ex-
plaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572.
Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville,
A., and Bengio, Y. (2013). Maxout networks. arXiv
preprint arXiv:1302.4389.
Hearst, M. A., Dumais, S. T., Osuna, E., Platt, J., and
Scholkopf, B. (1998). Support vector machines. IEEE
Intelligent Systems and their applications, 13(4):18–
28.
Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. R. (2012). Improving neural
networks by preventing co-adaptation of feature de-
tectors. arXiv preprint arXiv:1207.0580.
Iandola, F., Moskewicz, M., Karayev, S., Girshick, R., Dar-
rell, T., and Keutzer, K. (2014). Densenet: Imple-
menting efficient convnet descriptor pyramids. arXiv
preprint arXiv:1404.1869.
Jones, E., Oliphant, T., and Peterson, P. (2014). {SciPy}:
open source scientific tools for {Python}.
Krizhevsky, A., Nair, V., and Hinton, G. (2014). The
cifar-10 dataset. online: http://www. cs. toronto.
edu/kriz/cifar. html.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural
networks. In Advances in neural information process-
ing systems, pages 1097–1105.
Kurakin, A., Goodfellow, I., and Bengio, S. (2016). Adver-
sarial examples in the physical world. arXiv preprint
arXiv:1607.02533.
LeCun, Y., Boser, B. E., Denker, J. S., Henderson, D.,
Howard, R. E., Hubbard, W. E., and Jackel, L. D.
(1990). Handwritten digit recognition with a back-
propagation network. In Advances in neural informa-
tion processing systems, pages 396–404.
Ma, X., Li, B., Wang, Y., Erfani, S. M., Wijewickrema, S.,
Houle, M. E., Schoenebeck, G., Song, D., and Bai-
ley, J. (2018). Characterizing adversarial subspaces
using local intrinsic dimensionality. arXiv preprint
arXiv:1801.02613.
Papernot, N., Carlini, N., Goodfellow, I., Feinman, R.,
Faghri, F., Matyasko, A., Hambardzumyan, K., Juang,
Y.-L., Kurakin, A., Sheatsley, R., et al. (2016a). clev-
erhans v2. 0.0: an adversarial machine learning li-
brary. arXiv preprint arXiv:1610.00768.
Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik,
Z. B., and Swami, A. (2016b). Practical black-box at-
tacks against deep learning systems using adversarial
examples. arXiv preprint.
Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Ce-
lik, Z. B., and Swami, A. (2016c). The limitations of
deep learning in adversarial settings. In Security and
Privacy (EuroS&P), 2016 IEEE European Symposium
on, pages 372–387. IEEE.
Papernot, N., McDaniel, P., Wu, X., Jha, S., and Swami, A.
(2015). Distillation as a defense to adversarial pertur-
bations against deep neural networks. arXiv preprint
arXiv:1511.04508.
Tram
`
er, F., Kurakin, A., Papernot, N., Goodfellow, I.,
Boneh, D., and McDaniel, P. (2017a). Ensemble
adversarial training: Attacks and defenses. arXiv
preprint arXiv:1705.07204.
Tram
`
er, F., Papernot, N., Goodfellow, I., Boneh, D., and
McDaniel, P. (2017b). The space of transferable ad-
versarial examples. arXiv preprint arXiv:1704.03453.
YI Ping, WANG Kedi, H. C. G. S. Z. F. and Jianhua, L.
(2018). Adversarial attacks in artificial intelligence:
A survey. Journal of Shanhai Jiao Tong University,
52(10):1298–1306.
Detecting Adversarial Examples in Deep Neural Networks using Normalizing Filters
173