Information and Computer Science in Vietnam, pages
1–15. Springer.
Dreuw, P., Heigold, G., and Ney, H. (2011). Confidence-and
margin-based MMI/MPE discriminative training for
off-line handwriting recognition. International jour-
nal on document analysis and recognition, 14(3):273–
288.
Elfakir, Y., Khaissidi, G., Mrabti, M., and Chenouni, D.
(2015). Handwritten Arabic documents indexation us-
ing HOG feature. International Journal of Computer
Applications, 126(9).
Elleuch, M., Maalej, R., and Kherallah, M. (2016). A new
design based-SVM of the CNN classifier architecture
with dropout for offline Arabic handwritten recogni-
tion. Procedia Computer Science, 80:1712–1723.
Ghanem, T. M., Moustafa, M. N., and Shahein, H. I. (2009).
Gabor wavelet based automatic coin classsification. In
2009 16th IEEE International Conference on Image
Processing (ICIP), pages 305–308. IEEE.
Ghanim, T. M., Khalil, M. I., and Abbas, H. M. (2018).
Phog features and kullback-leibler divergence based
ranking method for handwriting recognition. In IAPR
Workshop on Artificial Neural Networks in Pattern
Recognition, pages 293–305. Springer.
Gonzalez, R. C. and Woods, R. E. (2007). Digital image
processing. Pearson.
Han, J., Pei, J., and Kamber, M. (2011). Data mining: con-
cepts and techniques. Elsevier.
Hicham, E. M., Akram, H., and Khalid, S. (2016). Using
features of local densities, statistics and HMM toolkit
(htk) for offline Arabic handwriting text recognition.
Journal of Electrical Systems and Information Tech-
nology, 3(3):99–110.
Jayech, K., Mahjoub, M. A., and Amara, N. E. B. (2015).
Arabic handwriting recognition based on synchronous
multi-stream HMM without explicit segmentation.
In International Conference on Hybrid Artificial In-
telligence Systems, volume 9121, pages 136–145.
Springer.
Khaissidi, G., Elfakir, Y., Mrabti, M., Lakhliai, Z., Che-
nouni, D., and El yacoubi, M. (2016). Segmentation-
free word spotting for handwritten Arabic documents.
International Journal of Interactive Multimedia and
Artificial Intelligence, 4.
Khosravi, H. and Kabir, E. (2007). Introducing a very large
dataset of handwritten farsi digits and a study on their
varieties. Pattern recognition letters, 28(10):1133–
1141.
Kumar, K. V. and Rao, R. R. (2013). Online handwritten
character recognition for telugu language using sup-
port vector machines. International Journal of Engi-
neering and Advanced Technology (IJEAT), 3.
Lawgali, A. (2015). A survey on Arabic character recog-
nition. International Journal of Signal Processing,
Image Processing and Pattern Recognition, 8(2):401–
426.
Lawgali, A., Angelova, M., and Bouridane, A. (2014). A
framework for Arabic handwritten recognition based
on segmentation. International Journal of Hybrid In-
formation Technology, 7(5):413–428.
Leila, C., Ma
ˆ
amar, K., and Salim, C. (2011). Combining
neural networks for Arabic handwriting recognition.
In Programming and Systems (ISPS), 2011 10th Inter-
national Symposium on, pages 74–79. IEEE.
Mezghani, A., Slimane, F., Kanoun, S., and M
¨
argner,
V. (2014). Identification of Arabic/French hand-
written/printed words using gmm-based system. In
CORIA-CIFED, pages 371–374.
Moghaddam, R. F., Cheriet, M., M. Adankon, M., Filo-
nenko, K., and Wisnovsky, R. (2010). Ibn sina: a
database for research on processing and understand-
ing of Arabic manuscripts images. Proceeding DAS
’10 Proceedings of the 9th IAPR International Work-
shop on Document Analysis Systems, pages 11–18.
Mohamed, H., Omar, R., Saeed, N., Essam, A., Ayman, N.,
Mohiy, T., and AbdelRaouf, A. (2018). Automated de-
tection of white blood cells cancer diseases. In Deep
and Representation Learning (IWDRL), 2018 First In-
ternational Workshop on, pages 48–54. IEEE.
Pechwitz, M., Maddouri, S. S., M
¨
argner, V., Ellouze, N.,
Amiri, H., et al. (2002). IFN/ENIT-database of hand-
written Arabic words. In Proc. of CIFED, volume 2,
pages 127–136.
Rokach, L. and Maimon, O. (2014). Data mining with deci-
sion trees: theory and applications. World scientific.
Sa
¨
ıdani, A. and Echi, A. K. (2014). Pyramid histogram
of oriented gradient for machine-printed/handwritten
and Arabic/Latin word discrimination. In Soft Com-
puting and Pattern Recognition (SoCPaR), 2014 6th
International Conference of, pages 267–272. IEEE.
Saidani, A., Kacem, A., and Belaid, A. (2015). Arabic/Latin
and machine-printed/handwritten word discrimination
using HOG-based shape descriptor. ELCVIA Elec-
tronic Letters on Computer Vision and Image Anal-
ysis, 14(2):1–23.
Shamim, S., Miah, M. B. A., Sarker, A., Rana, M., and
Al Jobair, A. (2018). Handwritten digit recognition
using machine learning algorithms. Global Journal of
Computer Science and Technology.
Theodoridis, S. and Koutroumbas, K. (2006). Pattern
Recognition. Academic Press.
Zamani, Y., Souri, Y., Rashidi, H., and Kasaei, S. (2015).
Persian handwritten digit recognition by random for-
est and convolutional neural networks. In Machine Vi-
sion and Image Processing (MVIP), 2015 9th Iranian
Conference on, pages 37–40. IEEE.
Multi-stage Off-line Arabic Handwriting Recognition Approach using Advanced Cascading Technique
539