A Hybrid Approach based on Parallel Coordinates and Star Plot

Kang Xie and Bijaya B. Karki
School of Electrical Engineering and Computer Science, Louisiana State University, Baton Rouge 70803, U.S.A.

Keywords: Information Visualization, Parallel Coordinates, Star Plot, Multivariate Data, High-dimensional Data.

Abstract

Multivariate data visualization has to accommodate all dimensions/variables of a given dataset in the same display so that the data items can be rendered with respect to these variables. We propose a hybrid approach based on the combination of the standard parallel coordinates and star plot techniques by implementing a focus + context scheme. The focus area displays the parallel coordinates plot of the data with respect to few selected dimensions by mapping them as vertical parallel axes sufficiently wide to provide a clear view of the variables and data. The context area then maps the rest of the variables as tightly packed radial axes forming one or two partial star plots. We design multiple layouts of combining the parallel and star axes. Each layout maintains the data continuity between the focus and context displays. Our tests show that the proposed hybrid axes plot can manage a large number of variables (even exceeding one hundred) to support effective visualization of ultra-high dimensional datasets.

1 INTRODUCTION

One of the major challenges in multivariate data visualization is to map all relevant dimensions (variables or attributes) in a finite 2D space in an unambiguous way (e.g., Johansson and Forsell, 2016). This mapping is critical to our ability in viewing how data values are distributed along individual variables and across all variables to extract useful information and gain insight. As such, the visualization can help us reveal clusters, correlations, and patterns contained in the data.

While there exist many techniques for visualization of multidimensional data, the parallel coordinates and star plot are the ones which aim to treat all variables on equal footing and visually represent the data items/samples/observations with respect to them (Chambers et al., 1983; Inselberg, 2009). Both techniques map each dimension as a straight line (i.e., an axis), however, resulting in different overall axes layouts. The parallel coordinates plot (PCP) maps all k dimensions as evenly placed k vertical parallel axes. The plot area usually extends in the horizontal direction more than in the vertical direction taking an advantage of the rectangular shape of computer screen. On the other hand, the star plot maps all variables as uniformly radiating axes from a common point. The star axes may be viewed as a circular layout of parallel
coordinates, providing more compaction in a square display area. Each axis represents one dimension in the dataset and the coordinate on each axis is the value of the corresponding attribute. Line segments are drawn to connect successive dimensions for each data item. The data polylines run from the left to right in the PCP plot. Comparing the data values on the vertical axes and following their data lines between the axes is easier as long as visual clutter is not too much (Inselberg, 1997). In the star plot, the line segments connecting successive radial axes form closed loops, which usually form recognizable star shapes (that is, star glyphs). This helps in comparing data samples and also in identifying dominating variables (Chambers et al., 1983; Shaw et al., 1999).

The parallel coordinates and star plots work well when the number of dimensions is low, say, below one dozen. In today's data/information-rich world, one can find many situations of high dimensionality, especially when all types of relevant variables (categorical and numerical) are considered (e.g., Inselberg, 2009; Sansen et al., 2017). When the number of dimensions is arbitrarily large, the parallel or radial axes are too closely spaced. So, the visualization process becomes incomprehensible. We are then compelled to select a few dimensions and visualize the data with respect to the chosen dimension-subset using the parallel coordinates or star plot (e.g., Yang et al., 2003; Forsdosi and

Roerdink, 2011). Several subsets of dimensions perhaps may need to be examined, one at a time, to go over the whole dataset.

However, it is desirable to visualize the dataset on its entirety so that full information is contained in the same display. This can be done using a bifocal display, which consists of a focus view of a few selected dimensions and a context view of the rest of the dimensions. Here, we propose a hybrid approach based on the combination of the standard parallel coordinates and star plot techniques by implementing a focus + context scheme. We explore various hybrid axes layouts and present analysis for selecting appropriate layout for a given high-dimensional dataset.

2 RELATED WORK

Visualization of high dimensional (multivariate) data has long been a subject of extensive investigation. Many visualization techniques are available. Here we talk about the parallel coordinates plot (PCP) and star plot because of their direct relevance to our proposed hybrid axes approach. PCP is widely used to visualize multivariate data as well as high-dimensional geometries (Inselberg, 2009; Heinrich and Weiskopf, 2013). The star plot is generally included in most visual data analysis packages as radial or web chart. Both plots are highly effective in judging multivariate relations, clustering, outlier detection, etc. when the number of dimensions or variables is small (Chambers et al. 1983; Inselberg, 1997). Multivariate visualization becomes overwhelming for datasets containing multiple dozens of variables simply because the axes packing becomes too compact.

To overcome the issues associated with highdimensionality, various approaches were previously proposed for axes management. Variable dimension spacing approach allows to tweak the default uniform axial gap to accommodate more axes while presenting a clear view of the selected axes (Yang et al., 2003). For instance, similar variables or less important variables can be mapped as tightly axes. Collapsing a subset of axes and zooming in/out of axes can be applied to adjust the dimension space of concerning axes (Brodbeck and Girardin, 2003). This idea was further implemented for a bifocal display consisting of focus and context parts (Novotny and Hauser, 2006; Kaur and Karki, 2018). The focus part renders the data with respect to few selected variables and the context part tightly packs the rest of the axes. Dimension reduction approach tends to discard less important variables from the plot (Johansson and

Johansson, 2009) and can be based on principal component analysis (Jolliffe, 1986; Mead, 1992). Similar dimensions can be merged to one representative dimension. An interactive approach is to select a subset of variables to be displayed in the main PCP view at a time, while keeping the rest in an overview plot or in a repository area (Riehmann et al., 2012; Gruendl et al., 2016). In these approaches, the information is either lost from or not fully available in the display.

To manage arbitrarily large number of dimensions, a multilevel plot scheme has been previously proposed. Such plot provides a stacked view containing two or more PCPs, each consisting of many variables, whose count is roughly the same between the levels (Kaur and Karki, 2018). In the case of star plot, the dimensions are divided into multiple groups, which are mapped to different concentric circular regions or rings (Sangli et al., 2016). The outer the ring, the larger the dimension group mapped. For example, a three-level star plot contains three sub-star icons for each data sample. The multilevel plots are particularly helpful in providing the context while focusing on few important dimensions. However, different-level PCPs or star plots are disjoint, and the data polylines become discontinuous (Sangli et al., 2016; Kaur and Karki, 2018). Such discontinuity is also an issue with the double PCP view approaches (Riehmann et al., 2012; Gruendl et al., 2016).

Integration of parallel coordinates and star plot techniques has been previously performed to design parallel glyphs (Fanea et al., 2005). To the best of our knowledge, no systematic study has been carried in addressing the problem of mapping ultra-large number of dimensions/variables. Our proposed hybrid approach combines the vertical parallel axes and the radial star axes to support a bifocal display of multivariate data.

3 HYBRID AXES PLOTS

We design the layouts of the combining parallel and radial axes to enable a focus + context visualization of multivariate data. The display space is partitioned into two or more parts. One part provides a focus view, which supports parallel coordinates plot (PCP) of the data with respect a few selected dimensions. The number of such high priority variables is kept small (below ten), so the corresponding parallel axes are spaced sufficiently wide. The other parts together provide a context view, which tightly packs the remaining variables either as radial axes or both as
radial and parallel axes. The context axial spacing can be arbitrarily small as the number of dimensions that are included in the context display can be arbitrarily large.

Let X and Y be the horizontal and vertical extents, respectively, of the display area used to visualize a given multivariate dataset consisting of k dimensions. We consider a rectangular display with $X \sim 2 Y$ as shown in Figure 1. Note that the aspect ratio $2: 1$ is not a constraint in our design of hybrid axes layout. If the focus display of width X_{F} maps k_{F} dimensions, the axial spacing is given by $\Delta X_{\mathrm{F}}=X_{\mathrm{F}} /\left(k_{\mathrm{F}}-1\right)$. The size of focus area is determined by fixing either X_{F} or ΔX_{F}. For instance, we take $X_{\mathrm{F}}=Y$ so the focus display is one half of the overall display. The parallel axes come closer as k_{F} increases. If the axial spacing hits some user-defined minimum threshold $\left(\Delta X_{\mathrm{F} 0}\right)$, we then widen the focus part according to $X_{\mathrm{F}}=\left(k_{\mathrm{F}}-1\right) \Delta X_{\mathrm{FO}}$.

The angular spacing between the k_{C} radial axes in the context display is given by

Figure 1: The hybrid axes layout 1 for a 31-dimensional dataset. The focus area displays PCP with respect to four variables (labelled $0,1,2$ and 3) and the context area shows a quarter star mapping 27 variables with no origin shift (upper) and with shift $0.5 l$ (lower). Two data polylines, one from each category value of dimension 0 , are highlighted.
where θ is the total angular span of all parts supporting the content display and $k_{\mathrm{C}}=k-k_{\mathrm{F}} k_{\mathrm{C}}$. For a full star plot, $\theta=360^{\circ}$. The length (l) of the
parallel and radial axes is Y (or $Y / 2$) for the $2: 1$ display. In the context view, we also apply an offset $\left(l_{0}\right)$ so the radial axes do not start from one common origin thereby opening a finite axial gap at their lower ends. The value of l_{0} can be calculated as:

$$
\begin{equation*}
l_{\mathrm{o}}=\min \left(\frac{\Delta \theta_{\mathrm{th}}}{\Delta \theta}, 0.5\right) l \tag{2}
\end{equation*}
$$

Here $\Delta \theta_{\text {th }}$ represents the threshold axial angle assigned by the user (the default value is set at 5°), $\Delta \theta$ is the angle between successive axes in the context star plot under consideration given by Eq. 1, and l is the axial length when the radial axes start from the single common origin. A bigger shift (up to $0.5 l$) can be helpful in reading the data lines when the axes contain dense small values.

Next, we present different layouts of our proposed hybrid parallel-radial axes plot. They mainly differ in the number and size of context parts used. For illustration, we use the breast cancer dataset containing 31 dimensions (Wolberg et al., 1994; Dua and Karra Taniskidou, 2017). We have $k=31, k_{\mathrm{F}}=4$, and $k_{\mathrm{C}}=27$. Note that the numerical labels on the axes in the plots represent the variables (Figure 1). For the four focus axes considered, 0: malignant/benign cancer, 1 : mean radius of mass, 2 : standard error of radius, and 3: largest radius. The origin shift l_{0} evaluated using the Eq. 2 is applied to the context axes.

3.1 Layout 1

The overall display is vertically split into two equal parts (Figure 1). The left side of the display maps k_{F} axes at the spacing $Y /\left(k_{\mathrm{F}}-1\right)$ for a $2: 1$ display space. The remaining axes are mapped to the other part as one quadrant of star plot. The positions of the focus and context parts can be switched in layout 1. The angular spacing is given by $\theta=90^{\circ} /\left(k_{\mathrm{C}}-1\right)$. For the example data, $\Delta \theta=3.5^{\circ}$ and the plot gives a highly cluttered display (Figure 1, upper). Using Eq. 2, we have $l_{0}=0.5 l$ assuming 5° threshold angular spacing. With this high shift applied, we can now trace the data polylines (Figure 1, lower). We can see that two highlighted samples, one for each cancer type (dimension 0), take different values for focus axes (1 and 3) as well as for most context axes.

3.2 Layout 2

To increase the angular spacing, we use a half star plot for the context display by reducing the axial length to half as shown in Figure 2. So, $\Delta \theta=$ $180^{\circ} /\left(k_{\mathrm{C}}-1\right)$. The focus display in layout 2 can be
widened because the context display gets narrower. For the example data with $k_{\mathrm{C}}=27$, we have now angular spacing of about 7°. The axial origin shift $l_{o}=$ $0.36 l$, according to Eq. 2 with $\Delta \theta_{\text {th }}=5^{\circ}$. The focus PCP clearly reveals that the malignant cancer samples tend to be bigger than the benign cancer samples (with respect to both variables 1 and 3).

Figure 2: The hybrid axes layout 2 for a 31-dimensonal dataset. The focus area displays PCP with respect to four variables and the context area shows a half star mapping 27 variables. For the dimension 0 , two categories are shown by red lines (malignant cancer) and blue lines (benign cancer).

3.3 Layout 3a and 3b

To maintain a reasonable angular spacing for large k, we can divide the display into three parts (Figure 3). The middle part provides the PCP focus display which is the same as in the previous two layouts. In layout 3a, the context display is split between two sides, each containing a half-star plot. The length of radial axis is the same as in layout 2, but the angular spacing improves further because of total 360° span. The context dimensions are split between the left half-star (k_{CL} axes) and the right half-star (k_{CR} axes), not necessarily equally, that is, k_{CL} and k_{CR} can be different. The corresponding angular spacings are given by $180 \%\left(k_{\mathrm{CL}}-1\right)$ and $180 \%\left(k_{\mathrm{CR}}-1\right)$. For the example data, we have an average angular spacing of about 14°, with the left and right half-stars accommodating 14 and 13 context axes, respectively (Figure 3). The origin shift is $l_{0}=0.18 l$, according to Eq. 2 with $\Delta \theta_{\text {th }}=5^{\circ}$.

While the selected dimensions are widely spaced out for a focus view, PCP alone may not provide the data visualization to a desired level. The focused visualization may need supplementary plots such as scattered plot or may benefit from showing the data table with selected entries. For this, we compress the focus PCP vertically to the upper half space to make the lower half space available for additional display

Figure 3: Two variants of the hybrid axes (layout 3a and 3b) for a 31-dimensonal dataset. The context display contains left and right half stars. The focus area displays PCP with respect to four variables. The lower layout divides the focus area into compressed PCP and a scatter plot between the first axes pair.
(Figure 3, lower). This layout 3b does not affect the length and angle for the context axes. In Figure 3 (lower), the scatter plot confirms strong positive correlation between the variables 1 and 3 .

3.4 Layout 4

For large k, the number of context axes also becomes large because the number of focus axes remains relatively small. We can have two three-quarter $\left(3 / 4^{\text {th }}\right)$ star plots, also using the space below compressed PCP (Figure 4, upper). The overall context display represents total one and half star plots so the total angular span is 540°. The angular spacings on the left and right three-quarter stars are given by $270^{\circ} /\left(k_{\mathrm{CL}}-1\right)$ and $270^{\circ} /\left(k_{\mathrm{CR}}-1\right)$, respectively. For the example data, we have a much wider angular spacing (about 21°) and a much smaller origin shift ($0.12 l$). Such a wide context view may not be needed for this dataset as the context axes are too widely spaced out.

3.5 Layout 5

Instead of converting each half-star to a $3 / 4^{\text {th }}$ star, we can actually bridge the left and right half-star plots by tightly packing the context axes as parallel axes in the space below the focus PCP (Figure 4, lower). The context display thus consists of three parts: left
half-star plot, right half-star plot, and middle PCP, each mapping approximately the same number of the context axes. Note that the context PCP axes are packed much more tightly and somewhat shorter than the focus PCP axes. The angular spacing for the star axes is close to that of layout 4 . The major difference of this layout from all other layouts is that the data polylines form closed loops, each consisting of a focus PCP portion, two half-star portions, and a context PCP portion.

4 IMPLEMENTATION AND ANALYSIS

The choice of a hybrid axis layout depends on the total number of variables of the dataset under consideration and the desired axial spacing in the context display. We implemented the proposed hybrid axes plot system using D3.js for data rendering and vue.js for user interface. For each axis, we define one end (which is a lower end for the focus axis or an origin-closer end for the context axis) as the normalized attribute value of zero and the other end as the normalized value of 1 . So, all data attributes are normalized to the range 0 to 1 .

Figure 4: The hybrid axes layout 4 (upper) and 5 (lower) for a 31-dimensonal dataset showing all data points. The focus area displays PCP with respect to four variables and the context area displays 27 variables. The data lines are colored for the cancer type: red (malignant) and blue (benign).

Our system finds an appropriate layout for a given dataset of k dimensions (Figure 5). Using the default
5° (or a user-specified value) for the threshold angle $\Delta \theta_{\mathrm{th}}$, it estimates the maximum number of the context axes each layout can accommodate according to the following relation:

$$
\begin{equation*}
k_{\mathrm{C}}=\frac{\theta}{\Delta \theta_{t h}}+1 \tag{3}
\end{equation*}
$$

The calculated numbers of the context axes for different layouts are given below:

	θ	$k_{\mathrm{C}}\left(\Delta \theta_{\mathrm{th}}=5^{\circ}\right)$	$k_{\mathrm{C}}\left(\Delta \theta_{\mathrm{th}}=10^{\circ}\right)$
Layout 1	90°	19	10
Layout 2	180°	37	19
Layout 3	360°	73	37
Layout 4	540°	109	55

Figure 5: A simple user-interface supporting the hybridaxes plot system.

There must be, at least, two axes to have a focus PCP. So, all layouts with $k_{\mathrm{C}} \geq k-2$ are acceptable, and the system chooses the one with angular requirement minimally met. The user then visualizes the data using the system-selected layout irrespective of the number of focus axes. However, the user can switch to any other layout and also adjust the origin shift in an interactive manner. Note that layout 5 has similar angular spacing as layout 4 , and the choice between two is left up to the user. For the 31-dimensional example data, the system assigns layout 2 for the default angular threshold $\left(5^{\circ}\right)$ and layout 3 a if the user specifies a wider angular spacing of 10°. The origin shift is $0.36 l$ in each case. It is important to note that in each layout, the data polylines are always continuous between the focus and context displays (for example, two highlighted data lines in Figures 1 and 3).

We now consider the example of ultra-high dimensional dataset. The Libras movement dataset consists of 91 variables describing the movements of hand for the sign language (Dias et al., 2009; Dua and Karra Taniskidou, 2017). With the default spacing $\Delta \theta_{\text {th }}=5^{\circ}$, the system assigns layout 4 , which can accommodate up to 109 axes, exceeding $k-2=89$. If a wider angular threshold of 10° is applied, none of
the layouts meets the requirement and the system assigns the layout with highest k_{C} value, that is, layout 4. Again, the user can select layout 5, which can accommodate the same number of context axes. Assuming that 4 dimensions are used for the focus display, we have 87 variables to be incorporated for the context display for the dataset. The axial angle $\Delta \theta$ and origin shift l_{0} take the following values for different layouts:
layout 1: $\Delta \theta=90^{\circ} / 86=1.1^{\circ}, l_{0}=0.5 l$
layout 2: $\Delta \theta=180^{\circ} / 86=2.1^{\circ}, l_{0}=0.5 l$
layout 3a, b: $\Delta \theta=360^{\circ} / 86=4.2^{\circ}, l_{0}=0.5 l$
layout 4: $\Delta \theta=540^{\circ} / 86=6.3^{\circ}, l_{0}=0.38 l$
layout 5: $\Delta \theta=360^{\circ} / 56=6.4^{\circ}, l_{0}=0.38 l$

The angular spacing is too small for layout 1 and 2 so both layouts are not appropriate (not shown here).

Figure 6: Hybrid axes plot of 91-dimensional dataset using layout 3a (upper) and layout 4 (lower). The focus PCP area shows four variables (label 0 and 1: x - and y-coordinates of the first point, label 2 and 3 : x - and y-coordinates of the second point). The context areas display 87 variables together in the left and right stars. A couple of data lines are highlighted in red and green.

The context stars in layout 3a appear to be too tight as well (Figure 6, upper). The best options are layout 4 and 5 , which give the widest angular spacing $\left(\sim 6.3^{\circ}\right)$ as shown in Figures 6 (lower) and 7. We can choose the minimum threshold for the angular spacing such that the context axes are visually traceable. This appears to be the case with a few degrees like 5°. For such angular spacing, the hybrid axes layouts 4 and 6 can allow the visualization of a dataset consisting of over 110 variables. We can improve the axial spacing at the ends closer to the origin to some extent by increasing the offset l_{0}.

Multidimensional visualization is generally prone to visual clutter. This is even more so for the proposed hybrid PC-star axes plots when they try to accommodate many data lines (Figure 4) and many dimensions as possible (Figure 6). Appropriate ways of interacting with the axes themselves and with the data polylines are critical to the effectiveness of the resulting visualization (Siirtola and Raiha, 2006; Turkay et al., 2011). Since the goal of this work is to design the axes layout, we support a minimal interactivity. There are options to select the desired layout and adjust the origin shift and focus area width (Figure 5). We can move the axes between the focus and context areas by selecting the concerned axes. We can highlight single or group of data polylines, so they can be traced not only in the focus display but also in all parts of the context display. Figure 7 displays two groups of data points, which differ not only with respect to focus axes, but also differ with respect to the most context axes. Their values are
reversed for certain variables such as $20,22,24,26$, and 28. An interesting way to change focus dimensions in layout 5 is to scroll them like a carousel (Figure 7).

5 CONCLUSIONS

We propose a hybrid approach based on the parallel coordinates and star plot techniques to visualize datasets containing ultra-high number of dimensions/variables/attributes. In essence, our approach integrates the ideas of these two plots into a hybrid plot consisting of parallel and radial axes. A few selected dimensions are mapped as parallel vertical axes to support a focus view while all the remaining axes are mapped tightly as radial star axes to support a context view. We explore various hybrid axes layouts, which differ in the way the context axes are represented as quarter, half, or three-quarter star. It is important to note that all axes layouts maintain the data continuity between the focus and context regions. We also present a rationale for selecting appropriate layout for a given number of variables by working with a couple of highdimensional datasets. More work is needed on several fronts to further demonstrate the applicability and effectiveness of the proposed hybrid techniques in high-dimensional data visualization. Some possible actions to be taken can deal with user evaluation, intelligent set of interactions and visual clutter reduction.

Figure 7: Hybrid axes plot of 91-dimensional dataset using layout 5 showing only 50 data points. The focus area displays PCP with respect to 5 variables (label $0,1,2,3$, and 4). The context display contains two half-stars and PCP, each mapping 25 variables. The data lines with low and high values with respect to focus axes are shown in green and blue, respectively.

REFERENCES

Dua, D. and Karra Taniskidou, E. (2017). UCI Machine Learning Repository. Irvine CA: University of California, School of Information and Computer Science. http://archive.ics.uci.edu/ml
Brodbeck, D. and Giradin, L. (2003). Design study: Using multiple coordinated views to analyze geo-referenced high-dimensional datasets. International Conference on Coordinated and Multiple Views in Exploratory Visualization, pages 104-111.
Chambers, J. M., Cleveland, W. S., Tukey, P. A., and Kleiner, B. (1983). Graphical Methods for Data Analysis.
Dias, D. B., Madeo, R. C. B., Rocha, T., Biscaro, H. H., and Peres, S. M. (2009). Hand movement recognition for Brazilian sign language: A study using distance-based neural networks. International Joint Conference on Neural Networks, pages 697-704.
Fanea, E., Carpendale, S., and Isenberg, T. (2005). An interactive 3D integration of parallel coordinates and star glyphs. IEEE Symposium on Information Visualization (INFOVIS 2005), pages 149-156.
Ferdosi, B. and Roerdink, J. B. T. (2011). Visualizing highdimensional structures by dimension ordering and filtering using subspace analysis. Computer Graphics Forum, 30: 1121-1130.
Gruendl, H., Riehmann, P., Pausch, Y., and Froehlich, B. (2016). Time-series plots integrated in parallel coordinates displays. Eurographics/IEEE VGTC Conference on Visualization, pages 321-330.
Heinrich, J. and Weiskopf, D. (2013). State of the art of parallel coordinates. In STAR Proceedings of Eurographics, pages 95-116.
Inselberg, A. (1997). Multidimensional detective. IEEE Symposium on Information Visualization (INFOVIS 1997), pages 100-107.

Inselberg, A. (2009). Parallel coordinates: visual multidimensional geometry and its application. Springer, New York.
Johansson, J. and Forsell, F. (2016). Evaluation of parallel coordinates" Overview, categorization and guidelines for future research. IEEE Transactions on Visualization and Computer Graphics, 22, 579-588.
Johansson, S. and Johansson, S. (2009). Interactive dimensionality reduction through user-defined combinations of quality metrics. IEEE Transactions on Visualization and Computer Graphics, 15: 993-1000.
Jolliffe, J. (1986). Principal component analysis. Springer Verlag.
Kaur, G. and Karki, B.B. (2018). Bifocal parallel coordinates plot for multivariate data visualization. In Int'l Joint Conf. on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2018), pages 176-183
Mead, Al. (1992). Review of the development of multidimensional scaling methods. The Statistician, 33:27-35.
Novotny, M. and Hauser, H. (2006). Outlier-preserving focus + context visualization in parallel coordinates.

IEEE Transactions on Visualization and Computer Graphics, 12:893-900.
Riehmann, P., Opolka, J., and Froehlich, B. (2012). The product explorer: Decision making with ease. International Working Conference on Advanced Visual Interfaces, pages 423-432.
Sangli, S.S., Kaur, G., Karki, B.B. (2016). Star plot visualization of ultrahigh dimensional multivariate data, Int'l Conf. on Advances in Big Data Analytics ($A B D A^{\prime} 16$), pages 91-97
Sansen, J., Richer, G., Jourde, T., Lalanne, F., Auber, D., and Bourqui, R. (2017). Visual exploration of large multidimensional data using parallel coordinates on big data infrastructure. Informatics, 4: 21.
Shaw, C. D., Hall, J. A., Blahut, C., Erbert, D. S. and Roberts, D. A. (1999). Using shape to visualize multivariate data. Workshop on New Paradigms in Information Visualization and Manipulation, ACM Press, New York, pages 17-20.
Siirtola, H., Raiha, K. (2006). Interacting with parallel coordinates. Interacting with Computers, 18:12781309.

Turkay, C., Filzmoser, P., and Hauser, H. (2011). Brushing dimensions: a dual visual analysis model for high dimensional data. IEEE Transactions on Visualization and Computer Graphics, 17:2591-2599.
Wolberg, W. H., Street, and W. N., Mangasarian, O. L. (1994). Machine learning techniques to diagnose breast cancer from fine-needle aspirates. Cancer Letters 77:163-171
Yang, J., Peng, W., Ward, M. O., and Rundensteiner, E. A. (2003). Interactive hierarchical dimension ordering, spacing and filtering for exploration of high dimensional datasets. IEEE Symposium on Information Visualization (INFOVIS 2003), pages 105-112.

