ACKNOWLEDGMENT
The author is grateful to anonymous referees for their
careful reading of the paper and useful comments.
This research was supported by the Israel Science
Foundation (grant No. 1686/17).
REFERENCES
B
¨
uhlmann, H. (1980). An economic premium principle.
ASTIN Bulletin: The Journal of the IAA, 11(1):52–60.
Cambanis, S., Huang, S., and Simons, G. (1981). On the
theory of elliptically contoured distributions. Journal
of Multivariate Analysis, 11(3):368–385.
Chi, Y., Lin, X. S., and Tan, K. S. (2017). Optimal rein-
surance under the risk-adjusted value of an insurer’s
liability and an economic reinsurance premium prin-
ciple. North American Actuarial Journal, 21(3):417–
432.
Cousin, A. and Di Bernardino, E. (2014). On multivariate
extensions of conditional-tail-expectation. Insurance:
Mathematics and Economics, 55:272–282.
D
´
eniz, E. G., Vazquez Polo, F., and Bastida, A. H. (2000).
Robust bayesian premium principles in actuarial sci-
ence. Journal of the Royal Statistical Society: Series
D (The Statistician), 49(2):241–252.
Dhaene, J., Henrard, L., Landsman, Z., Vandendorpe, A.,
and Vanduffel, S. (2008). Some results on the cte-
based capital allocation rule. Insurance: Mathematics
and Economics, 42(2):855–863.
Fang, K. W. (2017). Symmetric Multivariate and Related
Distributions: 0. Chapman and Hall/CRC.
Feinstein, Z. and Rudloff, B. (2017). A recursive algo-
rithm for multivariate risk measures and a set-valued
bellman’s principle. Journal of Global Optimization,
68(1):47–69.
Goovaerts, M., De Vylder, F., and Haezendonck, J. (1984).
Insurance premiums.
Gupta, A. K., Varga, T., and Bodnar, T. (2013). Ellipti-
cally contoured models in statistics and portfolio the-
ory. Springer.
Jouini, E., Meddeb, M., and Touzi, N. (2004). Vector-
valued coherent risk measures. Finance and stochas-
tics, 8(4):531–552.
Kamps, U. (1998). On a class of premium principles in-
cluding the esscher principle. Scandinavian Actuarial
Journal, 1998(1):75–80.
Landsman, Z. (2004). On the generalization of esscher and
variance premiums modified for the elliptical family
of distributions. Insurance: Mathematics and Eco-
nomics, 35(3):563–579.
Landsman, Z., Makov, U., and Shushi, T. (2016). Multi-
variate tail conditional expectation for elliptical dis-
tributions. Insurance: Mathematics and Economics,
70:216–223.
Landsman, Z., Makov, U., and Shushi, T. (2018). A mul-
tivariate tail covariance measure for elliptical distri-
butions. Insurance: Mathematics and Economics,
81:27–35.
Landsman, Z., Pat, N., and Dhaene, J. (2013). Tail variance
premiums for log-elliptical distributions. Insurance:
Mathematics and Economics, 52(3):441–447.
Landsman, Z. M. and Valdez, E. A. (2003). Tail conditional
expectations for elliptical distributions. North Ameri-
can Actuarial Journal, 7(4):55–71.
McNeil, A. J., Frey, R., Embrechts, P., et al. (2005). Quan-
titative risk management: Concepts, techniques and
tools, volume 3. Princeton university press Princeton.
Molchanov, I. and Cascos, I. (2016). Multivariate risk mea-
sures: a constructive approach based on selections.
Mathematical Finance, 26(4):867–900.
Shushi, T. (2017). Skew-elliptical distributions with appli-
cations in risk theory. European Actuarial Journal,
7(1):277–296.
Shushi, T. (2018). Stein’s lemma for truncated ellipti-
cal random vectors. Statistics & Probability Letters,
137:297–303.
Valdez, E. A. and Chernih, A. (2003). Wang’s capital allo-
cation formula for elliptically contoured distributions.
Insurance: Mathematics and Economics, 33(3):517–
532.
Van Heerwaarden, A. E., Kaas, R., and Goovaerts, M. J.
(1989). Properties of the esscher premium calculation
principle. Insurance: Mathematics and Economics,
8(4):261–267.
Wang, S. and Dhaene, J. (1998). Comonotonicity, correla-
tion order and premium principles. Insurance: Math-
ematics and Economics, 22(3):235–242.
Wang, S. et al. (2002). 43 a set of new methods and tools
for enterprise risk capital management and portfolio
optimization.
Xiao, Y. and Valdez, E. A. (2015). A black–litterman asset
allocation model under elliptical distributions. Quan-
titative Finance, 15(3):509–519.
ICORES 2019 - 8th International Conference on Operations Research and Enterprise Systems
110