REFERENCES
Barmaki, R. and Hughes, C. E. (2015). Providing Real-
time Feedback for Student Teachers in a Virtual Re-
hearsal Environment. In Proceedings of the 2015
ACM on International Conference on Multimodal In-
teraction, ICMI ’15, pages 531–537, New York, NY,
USA. ACM.
Bunt, H. (2009). The DIT++ taxonomy for functional di-
alogue markup. In AAMAS 2009 Workshop, Towards
a Standard Markup Language for Embodied Dialogue
Acts, pages 13–24.
Bunt, H., Petukhova, V., Traum, D., and Alexandersson, J.
(2017). Dialogue Act Annotation with the ISO 24617-
2 Standard. In Dahl, D. A., editor, Multimodal In-
teraction with W3C Standards: Toward Natural User
Interfaces to Everything, pages 109–135. Springer In-
ternational Publishing, Cham.
Carletta, J., Ashby, S., Bourban, S., Flynn, M., Guillemot,
M., Hain, T., Kadlec, J., Karaiskos, V., Kraaij, W.,
Kronenthal, M., Lathoud, G., Lincoln, M., Lisowska,
A., McCowan, I., Post, W., Reidsma, D., and Well-
ner, P. (2006). The AMI Meeting Corpus: A Pre-
announcement. In Proceedings of the Second Inter-
national Conference on Machine Learning for Mul-
timodal Interaction, MLMI’05, pages 28–39, Berlin,
Heidelberg. Springer-Verlag.
Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer,
W. P. (2002). SMOTE: Synthetic Minority Over-
sampling Technique. Journal of Artificial Intelligence
Research, 16:321–357.
Chen, L. and Eugenio, B. D. (2013). Multimodality and di-
alogue act classification in the RoboHelper project. In
SIGDIAL 2013 - 14th Annual Meeting of the Special
Interest Group on Discourse and Dialogue, Proceed-
ings of the Conference, pages 183–192. Association
for Computational Linguistics (ACL).
Chollet, M., W
¨
ortwein, T., Morency, L.-P., Shapiro, A.,
and Scherer, S. (2015). Exploring Feedback Strate-
gies to Improve Public Speaking: An Interactive Vir-
tual Audience Framework. In Proceedings of the 2015
ACM International Joint Conference on Pervasive and
Ubiquitous Computing
, UbiComp ’15, pages 1143–
1154, New York, NY, USA. ACM.
Core, M. G. and Allen, J. (1997). Coding dialogs with the
DAMSL annotation scheme. In AAAI Fall Symposium
on Communicative Action in Humans and Machines,
volume 56. Boston, MA.
Di Eugenio, B. and
ˇ
Zefran, M. (2015). The RoboHelper
Project: From Multimodal Corpus to Embodiment on
a Robot. In 2015 AAAI Fall Symposium Series.
Fukuda, M., Huang, H.-H., Kuwabara, K., and Nishida, T.
(2018). Proposal of a Multi-purpose and Modular Vir-
tual Classroom Framework for Teacher Training. In
Proceedings of the 18th International Conference on
Intelligent Virtual Agents, pages 355–356. ACM.
Fukuda, M., Huang, H.-H., Ohta, N., and Kuwabara, K.
(2017). Proposal of a Parameterized Atmosphere Gen-
eration Model in a Virtual Classroom. In Proceedings
of the 5th International Conference on Human Agent
Interaction, HAI ’17, pages 11–16, New York, NY,
USA. ACM.
Garner, S. R. (1995). Weka: The waikato environment
for knowledge analysis. In Proceedings of the New
Zealand Computer Science Research Students Confer-
ence, pages 57–64.
Janin, A., Baron, D., Edwards, J., Ellis, D., Gelbart, D.,
Morgan, N., Peskin, B., Pfau, T., Shriberg, E., Stol-
cke, A., and Wooters, C. (2003). The ICSI Meeting
Corpus. In 2003 IEEE International Conference on
Acoustics, Speech, and Signal Processing, 2003. Pro-
ceedings. (ICASSP ’03)., volume 1, pages I–I.
Jurafsky, D. (1997). Switchboard SWBD-DAMSL shallow-
discourse-function annotation coders manual. Insti-
tute of Cognitive Science Technical Report.
Kudou, T. (2013). MeCab: Yet Another Part-of-Speech and
Morphological Analyzer [Computer Software] Ver-
sion 0.996.
Liu, Y., Han, K., Tan, Z., and Lei, Y. (2017). Using Con-
text Information for Dialog Act Classification in DNN
Framework. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Process-
ing, pages 2170–2178.
Lugrin, J.-L., Charles, F., Habel, M., Matthews, J., Du-
daczy, H., Oberd
¨
orfer, S., Wittmann, A., Seufert,
C., Porteous, J., Grafe, S., and Latoschik, M. E.
(2018). Benchmark Framework for Virtual Students’
Behaviours. In Proceedings of the 17th International
Conference on Autonomous Agents and MultiAgent
Systems, AAMAS ’18, pages 2236–2238, Richland,
SC. International Foundation for Autonomous Agents
and Multiagent Systems.
Lugrin, J.-L., Latoschik, M. E., Habel, M., Roth, D.,
Seufert, C., and Grafe, S. (2016). Breaking Bad Be-
haviors: A New Tool for Learning Classroom Man-
agement Using Virtual Reality. Frontiers in ICT, 3.
Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Ef-
ficient Estimation of Word Representations in Vector
Space. arXiv:1301.3781 [cs].
Paul, B. and David, W. (2018). Praat: Doing phonetics by
computer [Computer Software] Version 6.0.40.
Petukhova, V. and Bunt, H. (2011). Incremental Dialogue
Act Understanding. In Proceedings of the Ninth In-
ternational Conference on Computational Semantics,
IWCS ’11, pages 235–244, Stroudsburg, PA, USA.
Association for Computational Linguistics.
Ribeiro, E., Ribeiro, R., and de Matos, D. M. (2015). The
Influence of Context on Dialogue Act Recognition.
arXiv:1506.00839 [cs].
Shriberg, E., Dhillon, R., Bhagat, S., Ang, J., and Car-
vey, H. (2004). The ICSI meeting recorder dia-
log act (MRDA) corpus. Technical report, INTER-
NATIONAL COMPUTER SCIENCE INST BERKE-
LEY CA.
Zhang, G. and Ge, H. (2013). Support vector machine
with a Pearson VII function kernel for discriminat-
ing halophilic and non-halophilic proteins. Compu-
tational Biology and Chemistry, 46:16–22.
Detection of Student Teacher’s Intention using Multimodal Features in a Virtual Classroom
177