convolution. In 2018 IEEE 4th International Forum
on Research and Technology for Society and Industry
(RTSI), Palermo, Italy.
Herkel, S., Knapp, U., and Pfafferott, J. (2008). Towards a
model of user behaviour regarding the manual control
of windows in office buildings. Building and Environ-
ment (Elsevier), 43(4):588–600.
Higdon, D. (1998). A process-convolution approach to
modelling temperatures in the North Atlantic Ocean.
Environmental and Ecological Statistics (Springer),
5(2):173–190.
Karnouskos, S. and Nass de Holanda, T. (2009). Simula-
tion of a smart grid city with software agents. In 2009
Third UKSim European Symposium on Computer
Modeling and Simulation, pages 424–429, Athens,
Greece.
Knutsson, H. and Westin, C.-F. (1993). Normalized and
differential convolution. In Proceedings of IEEE Con-
ference on Computer Vision and Pattern Recognition,
pages 515–523. IEEE.
Lemos, R. T. and Sans
´
o, B. (2006). Spatio-temporal vari-
ability of ocean temperature in the portugal current
system. J. Geophys. Res. (AGU), 111(C4):C04010.
Manville, C., Cochrane, G., Cave, J., Millard, J., Peder-
son, J. K., Thaarup, R. K., Liebe, A., Wissner, M.,
Massink, R., and Kotterink, B. (2014). Mapping
Smart Cities in the EU. Technical report.
Monmonier, M. (2010). Rhumb lines and map wars: a so-
cial history of the Mercator projection. University of
Chicago Press.
Okabe, A., Boots, B., Sugihara, K., and Chiu, S. N. (2000).
Spatial Tessellations: Concepts and Applications of
Voronoi Diagrams. Probability and Statistics. Wiley.
Olaru, A., Florea, A. M., and El Fallah Seghrouchni, A.
(2013). A context-aware multi-agent system as a mid-
dleware for ambient intelligence. Mobile Networks
and Applications (Springer), 18(3):429–443.
OpenStreetMap contributors (2017). Planet
dump retrieved from https://planet.osm.org.
https://www.openstreetmap.org.
Perles, A., Camilleri, G., and Gleizes, M.-P. (2017). Self-
adaptive distribution system state estimation. In Cri-
ado Pacheco, N., Carrascosa, C., Osman, N., and
Juli
´
an Inglada, V., editors, Multi-Agent Systems and
Agreement Technologies, pages 202–216. Springer.
Pham, T. Q., van Vliet, L. J., and Schutte, K. (2006). Robust
fusion of irregularly sampled data using adaptive nor-
malized convolution. EURASIP Journal on Advances
in Signal Processing (Springer), 2006(1):083268.
Piette, F., Caval, C., Dinont, C., Seghrouchni, A. E. F.,
and Tailliert, P. (2016). A multi-agent solution for
the deployment of distributed applications in ambi-
ent systems. In Baldoni, M., M
¨
uller, J. P., Nunes, I.,
and Zalila-Wenkstern, R., editors, Engineering Multi-
Agent Systems, pages 156–175. Springer, Singapore,
Singapore.
Pirttikangas, S., Tobe, Y., and Thepvilojanapong, N. (2010).
Smart environments for occupancy sensing and ser-
vices. In Nakashima, H., Aghajan, H., and Augusto,
J. C., editors, Handbook of Ambient Intelligence and
Smart Environments, pages 825–849. Springer.
Rafsanjani, M. K., Varzaneh, Z. A., and Chukanlo, N. E.
(2012). A survey of hierarchical clustering algo-
rithms. Journal of Mathematics and Computer Sci-
ence (ISRP), 5(3):229–240.
Roscia, M., Longo, M., and Lazaroiu, G. C. (2013). Smart
city by multi-agent systems. In 2013 International
Conference on Renewable Energy Research and Ap-
plications (ICRERA), pages 371–376, Madrid, Spain.
IEEE.
Verstaevel, N., Georg
´
e, J.-P., Bernon, C., and Gleizes, M.-P.
(2018). A self-organized learning model for anoma-
lies detection: Application to elderly people. In IEEE
International Conference on Self-Adaptive and Self-
Organizing Systems (SASO), pages 70–79, Trento,
Italy. IEEE.
Wong, L. T., Mui, K. W., and Cheung, C. T. (2014).
Bayesian thermal comfort model. Building and En-
vironment (Elsevier), 82:171–179.
Multi-agent Systems for Estimating Missing Information in Smart Cities
223