of traffic as generated by users in order to capture
traffic with multiple remote services and multiple
connections. We envisage the accuracy would
increase further and the method would be more robust
to more applications by including spacing between
connections or timing between connections.
REFERENCES
Alshammari, R. and Zincir-Heywood, A. N. (2015) ‘How
Robust Can a Machine Learning Approach Be for
Classifying Encrypted VoIP?’, Journal of Network and
Systems Management, 23(4), pp. 830–869. doi:
10.1007/s10922-014-9324-6.
Auld, T., Moore, A. W. and Gull, S. F. (2007a) ‘Bayesian
neural networks for internet traffic classification.’,
IEEE transactions on neural networks / a publication
of the IEEE Neural Networks Council, 18(1), pp. 223–
239. doi: 10.1109/TNN.2006.883010.
Auld, T., Moore, A. W. and Gull, S. F. (2007b) ‘Traffic
Classification’, 18(1), pp. 223–239.
Bakhshi, T. and Ghita, B. (2016a) ‘On Internet Traffic
Classification: A Two-Phased Machine Learning
Approach’, Journal of Computer Networks and
Communications, 2016(May). doi:
10.1155/2016/2048302.
Bakhshi, T. and Ghita, B. (2016b) ‘Traffic profiling:
Evaluating stability in multi-device user environments’,
Proceedings - IEEE 30th International Conference on
Advanced Information Networking and Applications
Workshops, WAINA 2016, pp. 731–736. doi:
10.1109/WAINA.2016.8.
Barlet-ros, P. (2014) ‘Extended Independent Comparison of
Popular Deep Packet Inspection ( DPI ) Tools for
Traffic Classification’.
Bashir, A. et al. (2013) ‘Classifying P2P activity in Netflow
records: A case study on BitTorrent’, IEEE
International Conference on Communications, pp.
3018–3023. doi: 10.1109/ICC.2013.6655003.
Boukhtouta, A. et al. (2016) ‘Network malware
classification comparison using DPI and flow packet
headers’, Journal of Computer Virology and Hacking
Techniques. Springer Paris, 12(2), pp. 69–100. doi:
10.1007/s11416-015-0247-x.
Buczak, A. and Guven, E. (2015) ‘A survey of data mining
and machine learning methods for cyber security
intrusion detection’, IEEE Communications Surveys &
Tutorials, PP(99), p.1. doi:
10.1109/COMST.2015.2494502.
Bujlow, T., Riaz, T. and Pedersen, J. M. (2012) ‘A method
for classification of network traffic based on C5.0
machine learning algorithm’, 2012 International
Conference on Computing, Networking and
Communications, ICNC’12, pp. 237–241. doi:
10.1109/ICCNC.2012.6167418.
Crotti, M. et al. (2007) ‘Traffic classification through
simple statistical fingerprinting’, ACM SIGCOMM
Computer Communication Review, 37(1), p. 5. doi:
10.1145/1198255.1198257.
Este, A., Gringoli, F. and Salgarelli, L. (2009) ‘Support
Vector Machines For Tcp Traffic Classification’,
Journal of Computer Networks, 53(14), pp. 2476–2490.
Finsterbusch, M. et al. (2014) ‘A survey of payload-based
traffic classification approaches’, IEEE
Communications Surveys and Tutorials, 16(2), pp.
1135–1156. doi: 10.1109/SURV.2013.100613.00161.
Freund, Y. and Schapire, R. E. (1995) ‘A desicion-theoretic
generalization of on-line learning and an application to
boosting’, 139, pp. 23–37. doi: 10.1007/3-540-59119-
2_166.
Galathiya, A., Ganatra, A. and Bhensdadia, C. (2012)
‘Improved Decision Tree Induction Algorithm with
Feature Selection, Cross Validation, Model Complexity
and Reduced Error Pruning’, International Journal of
Computer Science and Information Technologies, 3(2),
pp. 3427–3431. Available at:
http://ijcsit.com/docs/Volume
3/Vol3Issue2/ijcsit2012030227.pdf.
Hajjar, A., Khalife, J. and Díaz-Verdejo, J. (2015)
‘Network traffic application identification based on
message size analysis’, Journal of Network and
Computer Applications, 58, pp. 130–143. doi:
10.1016/j.jnca.2015.10.003.
Hofstede, R. et al. (2014) ‘Flow Monitoring Explained:
From Packet Capture to Data Analysis with NetFlow
and IPFIX’, IEEE Communications Surveys &
Tutorials, 16(c), pp. 1–1. doi:
10.1109/COMST.2014.2321898.
Joe Touch; Eliot Lear, Allison Mankin, Markku Kojo,
Kumiko Ono, M. S. and Lars Eggert, Alexey Melnikov,
Wes Eddy, and A. Z. (no date) IANA. Available at:
http://www.iana.org/assignments/service-names-port-
numbers/service-names-port-numbers.xhtml
(Accessed: 4 March 2016).
Khater, N. Al (2015) ‘Network Traffic Classification
Techniques and Challenges’, (Icdim), pp. 43–48.
Lazarou, G. Y. et al. (2009) ‘Describing Network Traffic
Using the Index of Variability’, IEEE/ACM
Transactions on Networking, 17(5), pp. 1672–1683.
doi: 10.1109/TNET.2008.2010494.
Moore, A. and Papagiannaki, K. (2005) ‘Toward the
accurate identification of network applications’,
Passive and Active Network Measurement. Available
at: http://link.springer.com/chapter/10.1007/978-3-
540-31966-5_4 (Accessed: 4 March 2016).
Moore, A. W. et al. (2005) ‘Internet traffic classification
using bayesian analysis techniques’, Proceedings of the
2005 ACM SIGMETRICS international conference on
Measurement and modeling of computer systems -
SIGMETRICS ’05, 33(1), p. 50. doi:
10.1145/1064212.1064220.
Park, B. et al. (2013) ‘Fine-grained traffic classification
based on functional separation’, International Journal
of Network Management, 23(5), pp. 350–381. doi:
10.1002/nem.1837.
Roughan, M. and Sen, S. (2004) ‘Class-of-service mapping
for QoS: a statistical signature-based approach to IP