Breiman, L., 2001. Random Forests. Machine Learning
45(1), Pages 5–32.
Breiman, L., Friedman, J. H., Olshen, R. A., Stone, C. J.,
1984. Classification And Regression Trees, Wadsworth
International Group. Belmont.
Cai, D., Zhang, C., He, X., 2010. Unsupervised feature
selection for multi-cluster data. In Proceedings of the
16th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM. Pages
333–342.
Cheung, Y.-m., Jia, H., 2012. Unsupervised feature
selection with feature clustering. In Proceedings of the
The 2012 IEEE/WIC/ACM International Joint
Conferences on Web Intelligence and Intelligent Agent
Technology-Volume 01. IEEE Computer Society. Pages
9–15.
Cleve, J., Lämmel, U., 2014. Data Mining, De Gruyter
Oldenbourg. München.
Dempster, A. P., Laird, N. M., Rubin, D. B., 1977.
Maximum Likelihood from Incomplete Data via the
EM Algorithm. Journal of the royal statistical society
Series B (methodological), Pages 1–38.
Duda, R. O., Hart, P. E., Stork, D. G., 2012. Pattern
Classification, Wiley-Interscience. s.l., 2. Aufl. edition.
Dy, J., Brodley, C. E., 2000. Feature subset selection and
order identification for unsupervised learning. In
International Conference on Machine Learning. Pages
247–254.
Gan, G., Ma, C., Wu, J., 2007. Data Clustering: Theory,
Algorithms, and Applications, SIAM. Philadelphia.
García, S., Luengo, J., Herrera, F., 2015. Data
Preprocessing in Data Mining, Springer. Cham.
Guyon, I., Elisseeff, A., 2003. An introduction to variable
and feature selection. Journal of Machine Learning
Research 3(Mar), Pages 1157–1182.
Han, J., Kamber, M., Pei, J., 2012. Data mining: Concepts
and Techniques, Elsevier/Morgan Kaufmann.
Amsterdam, 3th edition.
Hong, T.-P., Liou, Y.-L., Wang, S.-L., Vo, B., 2014.
Feature selection and replacement by clustering
attributes. Vietnam Journal of Computer Science 1(1),
Pages 47–55.
Jain, A. K., Dubes, R. C., 1978. Feature definition in pattern
recognition with small sample size. Pattern recognition
10(2), Pages 85–97.
Kira, K., Rendell, L. A., 1992. A practical approach to
feature selection. In Machine Learning Proceedings.
Pages 249–256.
Kononenko, I., 1994. Estimating attributes: analysis and
extensions of RELIEF. In European conference on
machine learning. Springer, Berlin, Heidelberg. Pages
171–182.
Krier, C., François, D., Rossi, F., Verleysen, M., 2007.
Feature clustering and mutual information for the
selection of variables in spectral data. In European
Symposium on Artificial Networks, Computational
Intelligence and Machine Learning. Pages 157–162.
Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P.,
Tang, J., Liu, H., 2017. Feature Selection: A Data
Perspective. ACM Computing Surveys (CSUR) 50(6),
Pages 94.
Liu, H., Wu, Xindong, Zhang, Shichao, 2011. Feature
Selection using Hierarchical Feature Clustering. In
Proceedings of the 20th ACM international conference
on Information and knowledge management. ACM.
Pages 979–984.
Mitra, P., Murthy, C. A., Pal, S. K., 2002. Unsupervised
feature selection using feature similarity. IEEE
transactions on pattern analysis and machine
intelligence 24(3), Pages 301–312.
Quinlan, J. R., 1993. C4.5: Programs for Machine
Learning, Morgan Kaufmann. San Mateo.
RapidMiner Inc., 2014. RapidMiner: Operator Reference
Manual.
Roiger, R. J., 2017. Data Mining: A Tutorial-Based Primer,
CRC Press. Boca Raton, 2nd edition.
Theodoridis, S., Koutroumbas, K., 2009. Pattern
recognition, Elsevier/Acad. Press. Amsterdam, 4th
edition.
Witten, I. H., Frank, E., Hall, M. A., Pal Christopher J.,
2017. Data mining: Practical Machine Learning Tools
and Techniques, Morgan Kaufmann. Cambridge, MA,
4th edition.
Comparison between Supervised and Unsupervised Feature Selection Methods
589