ACKNOWLEDGEMENTS
This work was funded by FEDER (85%) and by the
Azorean Regional Funds (15%), trough the Operati-
onal Program Azores 2020, in the scope of the pro-
ject ACORES-01-0145- FE D ER-000049. We thank
Luis Ro drigues and Hugo Diogo for sharing the
data u sed in this study, and the anonymous re-
viewers for their valuable comments and suggesti-
ons. AR acknowledges Fundac¸˜ao para a Ciˆenc ia
e Tecnologia (FCT), through postdoctoral grant
(SFRH/BPD/102494/2014) and the strategic pro je c t
UID/MAR/0429 2/2013 granted to MARE.
REFERENCES
Abar, S., Theodoropoulos, G. K., Lemarinier, P., and
O’Hare, G. M. (2017). Agent based modelling and si -
mulation tools: A review of the state-of-art software.
Computer Science Review, 24:13 – 33.
Adam, C., Taillandier, P., and Dugdale, J. (2017). Compa-
ring Agent Architectures in Social Simulation: BDI
Agents versus Finite-state Machines. In 50th Hawaii
International Conference on System Sciences , page
7p., Waikoloa, United States.
An, L. (2012). Modeling human decisions in coupled hu-
man and natural systems: Review of agent-based mo-
dels. Ecological Modelling, 229:25 – 36. Modeling
Human Decisions.
Balke, T. and Gilbert, N. (2014). How do agents make de-
cisions? a survey. Journal of Artificial Societies and
Social Simulation, 17(4):13.
Bastardie, F., Nielsen, J. R., Eigaard, O. R., Fock, H. O.,
Jonsson, P., and Bartoli no, V. (2015). Competition for
marine space: modelling the baltic sea fisheries and
effort displacement under spatial restrictions. ICES
Journal of Marine Science, 72(3):824–840.
Bastardie, F., Nielsen, J. R., and Miethe, T. (2013). Dis-
place: A dynamic, individual-based model for spatial
fishing planning and effort displacement - integrating
underlying fish population models. 71:366–386.
Groeneveld, J., M¨uller, B., Buchmann, C., Dressler, G.,
Guo, C., Hase, N., Hoffmann, F., John, F., Klas-
sert, C., Lauf, T., Liebelt, V., Nolzen, H., Pannicke,
N., Schulze, J., Weise, H., and Schwarz, N. (2017).
Theoretical foundations of human decision-making in
agent-based land use models – a review. Environmen-
tal Modelling & Software, 87:39 – 48.
Kennedy, W. G. (2012). Modelling Human Behaviour in
Agent-Based Models, pages 167–179. Springer Net-
herlands, Dordrecht.
Magessi, N. T. and Antunes, L. (2013). Modelling agents’
risk perception. In Omatu, S., Neves, J., Rodriguez,
J. M. C., Paz Santana, J. F., and Gonzalez, S. R.,
editors, Distributed Computing and Artificial Intelli-
gence, pages 275–282, Cham. Springer International
Publishing.
Mandrik, C. and Bao, Y. (2005). Exploring the concept and
measurement of general risk aversion. 32:531–539.
Menezes, G., Diogo, H., and Giacomello, E. (2013). Re-
construction of demersal fisheries history on the con-
dor seamount, azores archipelago (northeast atlantic).
Deep Sea Research Part II: Topical Studies in Ocea-
nography, 98:190–203.
Morato, T., Lemey, E., Menezes, G., Pham, C. K., Brito,
J., Soszynski, A., Pitcher, T. J., and Heymans, J. J.
(2016). Food-web and ecosystem structure of the
open-ocean and deep-sea environments of the azores,
ne atlantic. Frontiers in Marine Science, 3:245.
Pitcher, T. J., Clark, M. R., Morato, T., and Watson, R.
(2007). Seamounts: ecology,fisheries and conserva-
tion., volume 12.
Pitcher, T. J., Clark, M. R., Morato, T., and Watson, R.
(2010). Seamount fisheries: Do they have a f uture?
Oceanography (Special Issue on Mountains in the
Sea), 23(1):134 – 144.
Said, Y. B., Kanzari, D., and Bezzine, M. (2018). A Be-
havioral and Rational Investor Modeling to Explain
Subprime Crisis: Multi Agent Systems Simulation in
Artificial Financial Markets, pages 131–147. Sprin-
ger International Publishing, Cham.
Tisue, S. and Wilensky, U. (2004). Netlogo: A simple envi-
ronment for modeling complexity.
Tomic, V., Marinkovic, Z., and Janosevic, D. (2011). Pro-
methee method implementation with multi-criteria de-
cisions. 9:193–202.