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Abstract: It has been shown that poor sleep quality and stress are major causes for mental and physical health problems 
in developed countries. Thanks to advancements in wearable technology, remote patient monitoring has 
become possible, without the need of cumbersome and expensive equipment. A method for sleep/wake 
detection is proposed, using chest-worn accelerometer sensors. A total of 1727 nights from 580 individuals 
were analysed, resulting on the identification of an average sleep time of 463 min (SD=±80 min) per day. Our 
algorithm was able to automatically detect 483 min (SD=±97 min) of sleep. Results show that actigraphy with 
an accelerometer located at the chest has potential for sleep monitoring, though further research is required 
for further validation, preferably using polysomnography as a benchmark. 

1 INTRODUCTION 

Stress is regarded as one of the elementary factors for 
primary insomnia  (Morin, et al., 2003). It has been 
shown that insomnia can have a significant negative 
impact on the life quality of an individual, including 
reduced work and cognitive performance (Léger, et 
al., 2002), (Durmer and Dinges, 2005) and an 
increased risk of developing obesity (Phillips, 2006), 
cardiovascular diseases (Li, et al., 2014) and 
depression (Morawetz, 2003). To date, the golden 
standard for investigating human sleep patterns is 
polysomnography. However, this procedure can be 
experienced as cumbersome, is expensive, and 
usually deprives the subjects from their familiar 
environment, which can lead to changes in their 
sleeping patterns. (Le Bon, et al., 2001). Over the past 
30 years, the use of wearable technology has 
significantly improved, allowing ambulatory sleep 
investigation. Therefore, researchers are able to 
conduct experiments on a larger scale, outside a 
controlled laboratory environment, possibly resulting 
in more viable data as the first night effect could be 
reduced (Le Bon, et al., 2001). Actigraphy is 
considered to be a reliable method for sleep/wake 
detection (Littner, et al., 2003). Most actigraphy units 
are constructed in a watch like band shape that is 

either worn at the wrist or at the ankle. Sleep and 
wake patterns are estimated from periods of activity 
and inactivity based on registered movement in the 
device. (Littner, et al., 2003) Typically, actigraphy 
shows an accuracy for detecting sleep epochs 
between 87 and 90 percent compared to a 
polysomnography. (Meltzer, et al., 2012). This paper 
investigates the possibility for sleep classification 
using a chest-worn health device rather than a wrist 
or ankle-worn device, based on accelerometer data 
(ACC). The advantage of using such device, is that it 
is also capable of registering electrocardiogram 
(ECG) signals besides registering ACC data, which at 
a later stage, could provide more insight into 
physiology correlated issues with insomnia and sleep 
stages. A new method for sleep detection is required, 
since the chest oscillation during breathing is 
registered in the ACC data, causing false wake 
labelled positives, an issue that does not occur in 
traditional wrist worn devices. The aim of the study 
is to achieve a sleep detection accuracy equal to 
traditional actigraphy for the chest worn device. Data 
from 1002 volunteers over a 5 day consecutive period 
was used. The outcome of the algorithm was 
compared to diary input from the volunteers. 
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2 METHODS 

2.1 Subject Recruitment 

Volunteers (n=1,002) were recruited from the active 
working population from 11 technology, banking, 
and public sector companies located in Belgium and 
the Netherlands. People were encouraged to 
participate through means of internal company 
communication and the distribution of flyers. 
Participants had a chance to win a dinner or travel 
voucher (11 vouchers for every 200 participants). The 
collected sample contained 481 males (48%) and 446 
females (45%).75 participants (7.5%) did not report 
their gender. The participants were between the age 
of 21 and 65 (x̅=39.5 ± 9.8). An informed consent was 
obtained from the participants prior to their 
participation in the experiment. 

2.2 Data Collection Protocol 

The data was collected over a period of two years, 
from 2015 till 2017. Prior to the start of the 
experiment, a survey had to be filled out containing 
personal information such as gender, age, health 
information, work related conditions and lifestyle. 
The experiment lasted over a period of five days, 
starting on Thursday and ending on Monday. During 
the experiment, participants were requested to fill in 
a diary using Ecological Momentary Assessments 
(EMAs) on a smartphone application. EMAs allow 
researchers to do frequent sampling of the behaviors 
of the participant in real-time. (Shiffman, et al., 2008) 
The application asked the participants 12 times per 
day, at random times, to rate their perceived stress 
level from the past hour on a 5-point Likert scale. 
Additionally, each morning, the participants were 
asked to fill in a sleep diary in which they had to 
annotate the time they went to bed, how long it took 
to fall asleep, the number of times they woke up and 
the time at which they woke up in the morning. The 
participants were able to fill in their sleep times 

 

Figure 1: A health device used in the experiment. 

freely, by using the smartphone keyboard. The time it 
took to fall asleep was a multiple-choice: 0-10 
minutes, 11-30 minutes, 31-60 minutes or >60 
minutes. If they reported it took more than 60 minutes 
to fall asleep or if they woke up at least once during 
the night, additionally the reason for not being able to 
fall asleep or waking up was asked.  

2.3 Sensor Information 

Each participant was asked to wear a health device  at 
the chest, for the duration of the experiment, i.e. five 
days continuously (fig1). This is a regulatory 
approved device, for recording ECG (256Hz) and 
triaxial accelerometer (ACC) (32Hz) signals. The 
data was stored on an SD card, and read out after the 
experiment was concluded. Before the start of the 
experiment, the internal clock of the device was 
synchronised to UTC. Participants were asked to 
remove the sensor in case they participated in a 
vigorous physical activity, in order to prevent 
potential damage from sweating. 

2.4 Sleep Wake Classification 

The most commonly referred sleep/wake detection 
methods for wrist actigraphy are those of Cole et al 
(Cole, et al., 1992)  and Sadeh et al (Sadeh, et al., 
1994) The findings of Cole et al are based on previous 
findings of Webster et al, who used equation eq. 1. 
(Webster, et al., 1982) 

A = 0.025(0.15 Xt-4+ 0.15 Xt-3+ 0.15 Xt-2+ 0.08 
Xt-1+ 0.21 Xt + 0.12Xt+1 + 0.13 Xt+2  

(1) 

In this equation,  X(t) represents the sum of the digital 
activity values of the Medilog1 recorder for all 30 2-
s data epochs in 1 min at time t. (Webster, et al., 
1982).  Activity indicator A is considered sleep if 
A<1. (Webster, et al., 1982). However, above stated 
activity recognition methods are all based on wrist-
based activity. When the activity is measured from 
the chest, there is a natural oscillation due to the 
breathing pattern. Therefore, there was a need for a 
modified sleep/wake detection, with a lower 
sensitivity. The analysis was performed in MATLAB 
and the classification is determined by the ACC 
recordings of the health device. Each 60 seconds the 
ACC signal was scored for activity (A). For each axis, 
the difference between the minimal and maximal g 
value was calculated, and the activity was determined 
by eq. 2. 
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A= 0.025(0.2Xt-3+0.2Xt-2+0.2Xt-1+ 0.2Xt0+ 
0.2Xt+1) 

(2) 

Activity indicator A is considered sleep if A<1. X is 
the average maximal difference in g for each axis. t 
represents the time epoch in minutes of the signal, 
with t0 as the current minute. The sleep/wake state 
was evaluated based on activity indicator A (eq1), and 
stored as a Boolean true/false. From the moment the 
first 30 minutes of the Boolean stored sleep/wake 
indicator where label as sleep, the participant was 
considered asleep until the data indicated that the 
participant was up for at least 30 minutes, with a 
minimum of 120 minutes of registered sleep, in order 
to exclude potential daytime naps from the dataset.  If 
participants did not fill in the sleep diary correctly in 
the morning, the data of the previous night was 
removed. In total 1727 nights were included for 
analysis. 

2.5 Validation  

The outcome of the sleep-wake classification 
algorithm is compared with the diary entries from the 
EMAs. The maximum falling asleep times were 
added to the reported time to bed, e.g. if the 
participant indicated it took 0-10 minutes to fall 
asleep, 10 minutes were added to the time to bed to 
find the time the participant actually fell asleep. We 
investigated for which percentage of the nights the 
reported sleep and wake times matched with the 
detected sleep and wake times based on the 
accelerometer data. Since self-reporting is not always 
accurate, a tolerance of 0, 10, 30 and 60 minutes was 

introduced, allowing the classification to differ 0, 10, 
30 or 60 min respectively from the self-reported wake 
and sleep times. 

 

Figure 2: Flowchart for the sleep identification. 

3 RESULTS 

The tolerance scores of the algorithm are shown in 
table 1. A total of 1727 nights of 580 unique 
participants were analysed, and 81% of the nights fell 
within a 60 minute range in wake up and sleep time  

Table 1: Population within tolerance. 
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Figure 3: Scatterplot comparing the total sleep time (TST) of the diary and the algorithm for the entire population (A)- 
(n=1723) and the population within the 60 minute tolerance (B) (n=1427). Regression equation for the entire population is 
y=0.82x+102 and for the population within the 60 min tolerance y=0.93x+45. The root mean square values (RMSEs) are 
75.72 and 38.08 for A and B respectively. 

with regards to the diary entry. The average total 
sleep time (TST) of the population was 462 min for 
the data reported in the diary, with a SD of ±80 min, 
and 483 min for the data predicted with the algorithm, 
with an SD of ±97 min. The population that fell 
within the one hour tolerance had a TST of 460 min 
(SD=±76 min) for the diary and 472 min (SD=±78 
min) for the algorithm. Reported average falling 
asleep times for the populations was 22 minutes 
(SD=±15 min). The RMSEs are 75.72 min and 38.08 
min for A and B respectively. The correlation 
coefficient for the total estimated sleep time based on 
diary and algorithm was 0.69. For the population that 
fell within the diary boundary of 60 minutes, the 
absolute mean difference is 29 minutes (SD=±26 
min), and the correlation coefficient between the 
sleep times is 0.90. A scatterplot comparing the 
algorithm and the diary TST is presented in figure 3.  

4 DISCUSSION 

On average, the algorithm overestimated the sleep 
period by 20 min. The overestimation of the TST is 
in line with other research. This is a known issue with 
accelerometer data, as it is difficult to distinguish the 
sleep onset (SO), wake after sleep onset (WASO) and 
stage 1 sleep, as activity is generally limited when one 
is falling asleep  (Lockley, et al., 1999). Nevertheless, 
the agreement rate is within acceptable range, 

especially considering that the maximum range for 
falling asleep was subtracted from the TST, which is 
likely to be an overestimation of the reported SO. The 
current study has limitations regarding validation of 
the results, i.e. the lack of a comparison to a golden 
standard (polysomnography). Further research should 
investigate how the polysomnography, actimetry and 
self-reported sleep times are associated. Since the 
device used in this study also recorded the ECG, this 
could be used to further enhance the sleep/wake 
detection of the algorithm. Research has shown that 
the inclusion of ECG-based analysis can further 
improve the sleep wake detection, and could enable 
the differentiation between light sleep (stage 1 and 2), 
slow wave sleep (stage 3 and 4) and rapid eye 
movement sleep (Tal, et al., 2017).   The data could 
potentially also be used for the detection of health 
hazards, opening the path for further usage of 
wearable sensors in ambulatory healthcare 
monitoring (Mezick, et al., 2013). 

5 CONCLUSION 

We have collected ambulatory physiological data of 
1,002 subjects during 5 consecutive days and 4 
nights, in combination with background information, 
and smartphone-based self-reports. 580 subjects from 
this dataset were eligible for this analysis. This paper 
provides a method to distinguish sleep and non-sleep 
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periods on basis of accelerometer data, which can be 
used independent from the diary input. The usage of 
a chest located health device rather than a 
conventional wristband has the advantage that 
additional signals such as ECG can be recorded, 
without the need for additional sensors, which 
decreases the subject’s discomfort during 
measurements. Our paper presents an important first 
step for further research in linking continues 
monitored physiological night-time data with 
psychological self-reports. This could be used to 
create a model for individual based feedback, 
granting personalised health information to the user 
of the device. The ECG data from this dataset could 
be used to further enhance the detection of potential 
health hazards, contributing for increased usage of 
wearable sensors for healthcare monitoring purposes 
in the future.  

ACKNOWLEDGEMENTS 

Special thanks goes out to Elena Smets, who 
contributed significantly towards this project. 

REFERENCES 

Cole, R., Kripke, D., Gruen, W., Mullaney, D. and Gillin, 
J., 1992. Automatic Sleep/Wake Identification From 
Wrist Activity. SLEEP, 15(5), pp.461-469. 

Durmer, J. and Dinges, D., 2005. Neurocognitive 
Consequences of Sleep Deprivation. Seminars in 
Neurology, 25(01), pp.117-129. 

Le Bon, O., Staner, L., Hoffmann, G., Dramaix, M., San 
Sebastian, I., Murphy, J., Kentos, M., Pelc, I. and 
Linkowski, P., 2001. The first-night effect may last 
more than one night. Journal of Psychiatric Research, 
35(3), pp.165-172. 

Léger, D., Guilleminault, C., Bader, G., Lévy, E. and 
Paillard, M., 2002. Medical and Socio-Professional 
Impact of Insomnia. SLEEP, 25(6), pp.621-625. 

Li, M., Zhang, X., Hou, W. and Tang, Z., 2014. Insomnia 
and risk of cardiovascular disease: A meta-analysis of 
cohort studies. International Journal of Cardiology, 
176(3), pp.1044-1047. 

Littner, M., Kushida, C., Anderson, W., Bailey, D., Berry, 
R., Davila, D., Hirshkowitz, M., Kapen, S., Kramer, M., 
Loube, D., Wise, M. and Johnson, S., 2003. Practice 
Parameters for the Role of Actigraphy in the Study of 
Sleep and Circadian Rhythms: An Update for 2002. 
SLEEP, 26(3), pp.337-341. 

Lockley, S., Skene, D. and Arendt, J., 1999. Comparison 
between subjective and actigraphic measurement of 
sleep and sleep rhythms. Journal of Sleep Research, 
8(3), pp.175-183. 

Meltzer, L., Walsh, C., Traylor, J. and Westin, A., 2012. 
Direct comparison of Two New Actigraphs and 
Polysomnography in Children and Adolescents.. 
SLEEP, 35(1), pp. 59-166. 

Mezick, E., Matthews, K., Hall, M., Richard Jennings, J. 
and Kamarck, T., 2013. Sleep duration and 
cardiovascular responses to stress in undergraduate 
men. Psychophysiology, 51(1), pp.88-96. 

Morawetz, D., 2003. Insomnia and Depression: Which 
Comes First ?. Sleep Research Online, 5(2), pp. 77-81. 

Morin, C., Rodrigue, S. and Ivers, H., 2003. Role of Stress, 
Arousal, and Coping Skills in Primary Insomnia. 
Psychosomatic Medicine, 65(2), pp.259-267. 

Phillips, B., 2006. The Association Between Short Sleep 
Duration and Obesity in Young Adults: A 13-Year 
Prospective Study. Yearbook of Pulmonary Disease, 
2006, pp.256-258. 

Sadeh, A., Sharkey, M. and Carskadon, M., 1994. Activity-
Based Sleep-Wake Identification: An Empirical Test of 
Methodological Issues. SLEEP, 17(3), pp.201-207. 

Shiffman, S., Stone, A. and Hufford, M., 2008. Ecological 
Momentary Assessment. Annual Review of Clinical 
Psychology, 4(1), pp.1-32. 

Tal, A., Shinar, Z., Shaki, D., Codish, S. and Goldbart, A., 
2017. Validation of Contact-Free Sleep Monitoring 
Device with Comparison to Polysomnography. Journal 
of Clinical Sleep Medicine, 13(03), pp.517-522. 

Webster, J., Kripke, D., Messin, S., Mullaney, D. and 
Wyborney, G., 1982. An Activity-Based Sleep Monitor 
System for Ambulatory Use. SLEEP, 5(4), pp.389-399. 

 
 

Accelerometer-based Sleep/Wake Detection in an Ambulatory Environment

379


