gence, Operations Research, Bio-informatics and has
been used to tackle optimization problems in other
graphical models (including discrete Markov Random
Fields and Bayesian Networks).
In this paper, we introduce a Multi-Objective
VCSP (MO-VCSP), that is a VCSP involving mul-
tiple objectives. We propose a new extension of lo-
cal arc consistency to the MO-VCSP. The incremental
lower bounds set produced by Pareto-based soft local
arc consistency can be used for pruning inside Branch
and Bound search. The latter algorithm enables the
calculation of the set of all Pareto Optimal (PO) so-
lutions, an algorithm that enforces a Pareto soft local
arc consistency property takes into account the Pareto
principle by updating the set of Non-Dominated So-
lutions during a Branch and Bound search.
REFERENCES
Afruzi, E. N., Roghanian, E., Najafi, A., and Mazinani, M.
(2013). A multi-mode resource-constrained discrete
time–cost tradeoff problem solving using an adjusted
fuzzy dominance genetic algorithm. Scientia Iranica,
20(3):931 – 944.
Allouche, D., Bessiere, C., Boizumault, P., de Givry, S.,
Gutierrez, P., Lee, J. H., Leung, K. L., Loudni,
S., M
´
etivier, J.-P., Schiex, T., and Wu, Y. (2016).
Tractability-preserving transformations of global cost
functions. Artif. Intell., 238(C):166–189.
Bistarelli, S., Gadducci, F., Larrosa, J., and Rollon, E.
(2008). A soft approach to multi-objective optimiza-
tion. In Proceedings of the 24th International Confer-
ence on Logic Programming, ICLP ’08, pages 764–
768, Berlin, Heidelberg. Springer-Verlag.
Bistarelli, S., Gadducci, F., Larrosa, J., Rollon, E.,
and Santini, F. (2012). Local arc consistency
for non-invertible semirings, with an application to
multi-objective optimization. Expert Syst. Appl.,
39(2):1708–1717.
Bistarelli, S., Montanari, U., Rossi, F., Schiex, T., Verfail-
lie, G., and Fargier, H. (1999). Semiring-based csps
and valued csps: Frameworks, properties, and com-
parison. Constraints, 4(3):199–240.
Chiandussi, G., Codegone, M., Ferrero, S., and Varesio, F.
(2012). Comparison of multi-objective optimization
methodologies for engineering applications. Comput-
ers and Mathematics with Applications, 63(5):912 –
942.
Cohen, D., Jeavons, P., and Zivny, S. (2008). The expres-
sive power of valued constraints: Hierarchies and col-
lapses. Theoretical Computer Science TCS, 409:137–
153.
Cooper, M., De Givry, S., Sanchez, M., Schiex, T., and Zyt-
nicki, M. (2008). Virtual arc consistency for weighted
csp. In Proceedings of the 23rd National Conference
on Artificial Intelligence - Volume 1, AAAI’08, pages
253–258. AAAI Press.
Cooper, M., de Givry, S., Sanchez, M., Schiex, T., Zytnicki,
M., and Werner, T. (2010). Soft arc consistency revis-
ited. Artificial Intelligence, 174(7):449 – 478.
Cooper, M. and Schiex, T. (2004). Arc consistency for soft
constraints. Artif. Intell., 154(1-2):199–227.
Cooper, M. C. (2005). High-order consistency in valued
constraint satisfaction. Constraints, 10(3):283–305.
de Givry, S., Zytnicki, M., Heras, F., and Larrosa, J. (2005).
Existential arc consistency: Getting closer to full arc
consistency in weighted csps. In Proceedings of the
19th International Joint Conference on Artificial Intel-
ligence, IJCAI’05, pages 84–89, San Francisco, CA,
USA. Morgan Kaufmann Publishers Inc.
Deb, K. and Kalyanmoy, D. (2001). Multi-Objective Opti-
mization Using Evolutionary Algorithms. John Wiley
& Sons, Inc., New York, NY, USA.
Emma, R. and Javier, L. (2006). Bucket elimination for
multiobjective optimization problems. J. Heuristics.
Hazır, O., Haouari, M., and Erel, E. (2010). Robust schedul-
ing and robustness measures for the discrete time/cost
trade-off problem. European Journal of Operational
Research, 207(2):633 – 643.
Helaoui, M. and Naanaa, W. (2012). A submodular-
based decomposition strategy for valued csps. The
Sixth ”Starting Artificial Intelligence Research” Sym-
posium. Montpellier, France.
Helaoui, M. and Naanaa, W. (2013). Modularity-based de-
compositions for valued csp. Annals of Mathematics
and Artificial Intelligence.
Jeavons, P. G. and Cooper, M. C. (1995). Tractable con-
straints on ordered domains. Artificial Intelligence,
79(2):327 – 339.
Larrosa, J. (2002). Node and arc consistency in weighted
csp. In Eighteenth National Conference on Artifi-
cial Intelligence, pages 48–53, Menlo Park, CA, USA.
American Association for Artificial Intelligence.
Larrosa, J. and Schiex, T. (2003). In the quest of the best
form of local consistency for weighted CSP. In IJCAI-
03, Proceedings of the Eighteenth International Joint
Conference on Artificial Intelligence, Acapulco, Mex-
ico, August 9-15, 2003, pages 239–244.
Larrosa, J. and Schiex, T. (2004). Solving weighted CSP by
maintaining arc consistency. Artif. Intell., 159(1-2):1–
26.
Le Thi, H. A., Bouvry, P., and Pham Dinh, T., editors
(2008). Solving the Multiple Objective Integer Linear
Programming Problem, Berlin, Heidelberg. Springer
Berlin Heidelberg.
Lee, J. and Leung, K. (2012). Consistency techniques
for flow-based projection-safe global cost functions in
weighted constraint satisfaction. J. Artif. Intell. Res.
(JAIR), 43:257–292.
Naanaa, W. (2008). Substitutability based domain decom-
position for constraint satisfaction. CP.
Schiex, T., Fargier, H., and Verfaillie, G. (1995). Valued
constraint satisfaction problems: Hard and easy prob-
lems. In Proceedings of the 14th International Joint
Conference on Artificial Intelligence - Volume 1, IJ-
CAI’95, pages 631–637, San Francisco, CA, USA.
Morgan Kaufmann Publishers Inc.
ICAART 2019 - 11th International Conference on Agents and Artificial Intelligence
304