REFERENCES
Caillat, B., Gilbert, B., Kemmerer, R., Kruegel, C., and Vi-
gna, G. (2015). Prison: Tracking process interactions
to contain malware. In High Performance Computing
and Communications (HPCC), 2015 IEEE 7th Inter-
national Symposium on Cyberspace Safety and Secu-
rity (CSS), 2015 IEEE 12th International Conferen on
Embedded Software and Systems (ICESS), 2015 IEEE
17th International Conference on, pages 1282–1291.
IEEE.
Chow, J., Garfinkel, T., and Chen, P. M. (2008). Decou-
pling dynamic program analysis from execution in vir-
tual environments. In USENIX 2008 Annual Technical
Conference on Annual Technical Conference, pages
1–14.
Cuckoo (2013). Automated Malware Analysis. https:
//www.cuckoosandbox.org/.
Dolan-Gavitt, B., Hodosh, J., Hulin, P., Leek, T., and Whe-
lan, R. (2015). Repeatable reverse engineering with
panda. In Proceedings of the 5th Program Protection
and Reverse Engineering Workshop, page 4. ACM.
Dolan-Gavitt, B., Leek, T., Zhivich, M., Giffin, J. T., and
Lee, W. (2011). Virtuoso: Narrowing the semantic
gap in virtual machine introspection. In IEEE Sympo-
sium on Security and Privacy, pages 297–312. IEEE
Computer Society.
Egele, M., Kruegel, C., Kirda, E., Yin, H., and Song, D.
(2007). Dynamic spyware analysis.
Egele, M., Scholte, T., Kirda, E., and Kruegel, C. (2012). A
survey on automated dynamic malware-analysis tech-
niques and tools. ACM computing surveys (CSUR),
44(2):6.
Foundation, O. S. (2018). OpenSSL Cryptography and
SSL/TLS Toolkit. https://www.openssl.org/.
Garfinkel, T. and Rosenblum, M. (2003). A virtual machine
introspection based architecture for intrusion detec-
tion. In Proc. Network and Distributed Systems Se-
curity Symposium.
Graphviz (2018). “Graphviz - Graph Visualization Soft-
ware”. https://www.graphviz.org/.
Gr¨obert, F., Willems, C., and Holz, T. (2011). Automated
identification of cryptographic primitives in binary
programs. In International Workshop on Recent Ad-
vances in Intrusion Detection, pages 41–60. Springer.
Henderson, A., Prakash, A., Yan, L. K., Hu, X., Wang, X.,
Zhou, R., and Yin, H. (2014). Make it work, make it
right, make it fast: building a platform-neutral whole-
system dynamic binary analysis platform. In Proceed-
ings of the 2014 International Symposium on Software
Testing and Analysis, pages 248–258. ACM.
Jacob, G., Hund, R., Kruegel, C., and Holz, T. (2011). Jack-
straws: Picking command and control connections
from bot traffic. In USENIX Security Symposium, vol-
ume 2011. San Francisco, CA, USA.
Korczynski, D. and Yin, H. (2017). Capturing malware
propagations with code injections and code-reuse at-
tacks. In Proceedings of the 2017 ACM SIGSAC Con-
ference on Computer and Communications Security,
CCS ’17, pages 1691–1708, New York, NY, USA.
ACM.
Lee, A., Varadharajan, V., and Tupakula, U. (2013).
On malware characterization and attack classifica-
tion. In Proceedings of the First Australasian Web
Conference-Volume 144, pages 43–47. Australian
Computer Society, Inc.
Lengyel, T. K., Maresca, S., Payne, B. D., Webster, G. D.,
Vogl, S., and Kiayias, A. (2014). Scalability, fidelity
and stealth in the drakvuf dynamic malware analysis
system. In Proceedings of the 30th Annual Computer
Security Applications Conference.
Mitre (2018). “ATT&CK Linux Technique Matrix”. https:
//attack.mitre.org/wiki/Linux
Technique Matrix (ac-
cessed 2018-02-13).
Mitre (2018). “MAEC Core Specification, Ver-
sion 5.0”. http://maecproject.github.io/releases/5.0/
MAEC
Core Specification.pdf.
Panda-re (2018). “Platform for Architecture-Neutral Dy-
namic Analysis”. https://github.com/panda-re/panda.
Schwartz, E. J., Avgerinos, T., and Brumley, D. (2010). All
you ever wanted to know about dynamic taint anal-
ysis and forward symbolic execution (but might have
been afraid to ask). In Security and privacy (SP), 2010
IEEE symposium on, pages 317–331. IEEE.
Security, O. (2018). About the Metasploit Me-
terpreter. https://www.offensive-security.com/
metasploit-unleashed/about-meterpreter/.
Slowinska, A. and Bos, H. (2009). Pointless tainting?: eval-
uating the practicality of pointer tainting. In Proceed-
ings of the 4th ACM European conference on Com-
puter systems, pages 61–74. ACM.
Stamatogiannakis, M., Groth, P., Bos, H., et al. (2015). De-
coupling provenance capture and analysis from execu-
tion. In Proceedings of the 7th USENIX Workshop on
the Theory and Practice on Provenance (TaPP). Ed-
inburgh, Scotland.
Strom, B. E., Battaglia, J. A., Kemmerer, M. S., Kuper-
sanin, W., Miller, D. P., Wampler, C., Whitley, S. M.,
and Wolf, R. D. (2017). Finding cyber threats with
att&ck-based analytics.
Wang, Z., Jiang, X., Cui, W., Wang, X., and Grace, M.
(2009). Reformat: Automatic reverse engineering of
encrypted messages. In ESORICS, volume 9, pages
200–215. Springer.
Whelan, R., Leek, T., and Kaeli, D. (2013). Architecture-
independent dynamic information flow tracking. In
International Conference on Compiler Construction,
pages 144–163. Springer.
Yakdan, K., Dechand, S., Gerhards-Padilla, E., and Smith,
M. (2016). Helping johnny to analyze malware: A
usability-optimized decompiler and malware analysis
user study. In Security and Privacy (SP), 2016 IEEE
Symposium on, pages 158–177. IEEE.
Yin, H., Song, D., Egele, M., Kruegel, C., and Kirda, E.
(2007). Panorama: capturing system-wide informa-
tion flow for malware detection and analysis. In Pro-
ceedings of the 14th ACM conference on Computer
and communications security, pages 116–127. ACM.