over time, it is possible to implement a continuous
view maintenance strategy that performs horizontal
partitioning on the derived views, allowing the pro-
posed mechanism to adapt to workload-specific de-
mands, using an approach similar to the one presented
in (Ordonez-Ante et al., 2017). The implementation
of the cardinality-awareness feature for the proposed
view selection mechanism, as well as the view main-
tenance strategy discussed above are the future exten-
sions of the work presented in this paper.
ACKNOWLEDGEMENTS
This work was supported by the Research Founda-
tion Flanders (FWO) under Grant number G059615N
- “Service oriented management of a virtualised fu-
ture internet” and the strategic basic research (SBO)
project DeCoMAdS under Grant number 140055.
REFERENCES
Aouiche, K. and Darmont, J. (2009). Data mining-based
materialized view and index selection in data ware-
houses. Journal of Intelligent Information Systems,
33(1):65–93.
Aouiche, K., Jouve, P.-E., and Darmont, J. (2006).
Clustering-based materialized view selection in data
warehouses. In Manolopoulos, Y., Pokorn
´
y, J., and
Sellis, T. K., editors, Advances in Databases and In-
formation Systems, pages 81–95, Berlin, Heidelberg.
Springer Berlin Heidelberg.
Camacho Rodriguez, J. (2018). Materialized views in
apache hive 3.0. https://cwiki.apache.org/confluen
ce/display/Hive/Materialized+views. Last accessed:
2018.10.15.
Chirkova, R., Halevy, A. Y., and Suciu, D. (2001). A formal
perspective on the view selection problem. In VLDB
2001, volume 1, pages 59–68.
Derakhshan, R., Stantic, B., Korn, O., and Dehne, F. (2008).
Parallel simulated annealing for materialized view se-
lection in data warehousing environments. In ICA3PP
2008, pages 121–132. Springer.
Friedman, J., Hastie, T., and Tibshirani, R. (2009). Clus-
tering analysis. In The elements of statistical learn-
ing: Data mining, inference and prediction, chap-
ter 14, pages 501–520. Springer series in statistics,
New York.
Gosain, A. and Sachdeva, K. (2017). A systematic review
on materialized view selection. In Satapathy, S. C.,
Bhateja, V., Udgata, S. K., and Pattnaik, P. K., editors,
FICTA 2017, pages 663–671, Singapore. Springer
Singapore.
Goswami, R., Bhattacharyya, D., and Dutta, M. (2017).
Materialized view selection using evolutionary algo-
rithm for speeding up big data query processing. Jour-
nal of Intelligent Information Systems, 49(3):407–
433.
Goswami, R., Bhattacharyya, D. K., Dutta, M., and Kalita,
J. K. (2016). Approaches and issues in view selec-
tion for materialising in data warehouse. International
Journal of Business Information Systems, 21(1):17–
47.
Kumar, T. V. V., Singh, A., and Dubey, G. (2012). Min-
ing queries for constructing materialized views in a
data warehouse. In Advances in Computer Science,
Engineering & Applications, pages 149–159, Berlin,
Heidelberg. Springer Berlin Heidelberg.
M
¨
ullner, D. (2011). Modern hierarchical, agglomerative
clustering algorithms. Computing Research Reposi-
tory (CoRR), abs/1109.2378.
Nalini, T., Kumaravel, A., and Rangarajan, K. (2012).
A comparative study analysis of materialized view
for selection cost. World Applied Sciences Journal
(WASJ), 20(4):496–501.
O’Neil, P. E., O’Neil, E. J., and Chen, X. (2009). The
star schema benchmark (revision 3, june 5, 2009).
https://www.cs.umb.edu/ poneil/StarSchemaB.PDF.
Ordonez-Ante, L., Vanhove, T., Van Seghbroeck, G.,
Wauters, T., Volckaert, B., and De Turck, F. (2017).
Dynamic data transformation for low latency querying
in big data systems. In 2017 IEEE International Con-
ference on Big Data (Big Data), pages 2480–2489.
Phuboon-ob, J. and Auepanwiriyakul, R. (2007). Two-
phase optimization for selecting materialized views in
a data warehouse. International Journal of Computer,
Electrical, Automation, Control and Information En-
gineering, 1(1):119–123.
Plattner, H. (2013). A Course in In-Memory Data Manage-
ment: The Inner Mechanics of In-Memory Databases.
Springer Publishing Company, Inc.
Qushem, U. B., Zeki, A. M., Abubakar, A., and Akleylek,
S. (2017). The trend of business intelligence adoption
and maturity. In UBMK 2017, pages 532–537.
Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to
the interpretation and validation of cluster analysis.
Journal of computational and applied mathematics,
20(1):53–65.
Serna-Encinas, M. T. and Hoyo-Montano, J. A. (2007). Al-
gorithm for selection of materialized views: based on
a costs model. In Current Trends in Computer Sci-
ence, 2007. ENC 2007. Eighth Mexican International
Conference on, pages 18–24. IEEE.
Shvachko, K., Kuang, H., Radia, S., and Chansler, R.
(2010). The hadoop distributed file system. In MSST
2010, pages 1–10, Washington, DC, USA. IEEE Com-
puter Society.
Sun, X. and Wang, Z. (2009). An efficient materialized
views selection algorithm based on pso. In ISA 2009,
pages 1–4. IEEE.
Thakur, G. and Gosain, A. (2011). A comprehensive analy-
sis of materialized views in a data warehouse environ-
ment. International Journal of Advanced Computer
Science and Applications, 2(5):76–82.
Vohra, D. (2016a). Apache avro. In Practical Hadoop
Ecosystem, pages 303–323. Springer.
Automatic View Selection for Distributed Dimensional Data
27