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Abstract: Functionality of neural networks is based on changing connectivity between the neurons. Usually, such 

changes follow certain learning procedures that define which neurons are interconnected and what is the 

strength of the connection. The connected neurons form the distinguished groups also known as Hebbian 

ensembles that can act during long time or can disintegrate into smaller groups or even into separate 

neurons. In the paper, we consider the mechanism of assembling / disassembling of the groups of neurons. 

In contrast to the traditional approaches, we set ourselves to “the neuron’s point of view” and assume that 

the neuron chooses the neuron to connect with following the difference between the current individual 

entropy and the expected entropy of the ensemble. The states of the neurons are defined by the well-known 

Hodgkin-Huxley model and the entropy of the neuron and the neuron’s ensemble is calculated using the 

Klimontovich method. The suggested model is illustrated by numerical simulations that demonstrate its 

close relation with the known self-organizing systems and the dynamical models of the brain activity. 

1 INTRODUCTION 

Artificial neural networks are mathematical models 

of nervous systems of living organisms. Formally, 

such networks are the systems of interconnected 

basic elements – neurons, and their functionality 

depends on changing connectivity between the 

neurons. The neurons act according to the activation 

function and send the output signals with respect to 

the sum of input signals. 

In the traditional considerations of artificial 

neural networks (Fausett, 1995), (Russell and Norvig, 

2010), connectivity between the neurons is defined 

by certain learning procedures that specify which 

neurons are interconnected and what is the strength 

of the connection. Then, the neurons change their 

states with respect to the sum of the input signals. 

The output signals are transmitted with respect to the 

states of the neurons, and after transmitting the 

outputs the neurons return to their initial states. 

In the other approaches mainly used in 

synergetics (Haken, 2008), the changes of the 

neurons’ states are directly considered as oscillations 

with varying period near a neutral state (Kuzmina, 

Manykin and Grichuk, 2014). The variations of the 

period in each neuron depend on the oscillations of 

the neighbouring neurons. This point of view 

introduces neural networks into general framework 

of dynamical systems (Zaslavsky, 2007) and allows 

their studies using the methods of non-linear 

dynamics and statistical physics (Klimontovich, 

1991). The connectivity between the neurons in such 

dynamical oscillating systems is defined from “the 

neuron’s point of view”, where each neuron 

independently chooses with which neuron it prefers 

to connect. 

Then, there arises a natural question: what 

factors lead the neurons to connect one with the 

other and to form the ensembles and what factors 

lead the neurons to disconnect and to disassemble 

the existing ensembles? 

The popular Hebbian theory (Hebb, 1949) 

presents the reasons of such choice in the qualitative 

form and specifies the connection between the 

neurons in the terns of sparking synchronization; a 

brief overview of the Hebbian theory and its 

successors was published by Fregnac (Fregnac, 

2003); one of the attempts of mathematical 

formalization of this theory in the terms of 

dynamical systems was conducted by Gerstner and 

Kistler (Gerstner and Kistler, 2002). 

In the paper, we present the model of assembling 

/ disassembling of the groups of neurons. Following 
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the dynamical systems’ approach, we set ourselves 

to “the neuron’s point of view” and assume that the 

neuron chooses the neuron to connect with following 

the difference between the current individual 

entropy and the expected entropy of the ensemble.  

The states of the neurons are defined by the 

simple model of the sparking neurons developed by 

Izhikevich (Izhikevich, 2003, Izhikevich, 2007) on 

the basis of the well-known equations by Hodgkin 

and Huxley (see e.g. (Sterratt, Graham, Gillies and 

Willshaw, 2011)). The entropy of the neuron and the 

neuron’s ensemble is calculated using the 

Klimontovich method (Klimontovich, 1987), 

(Klimontovich, 1991). 

The suggested model is illustrated by direct 

numerical simulations that demonstrate its close 

relation with the Turing system (Turing, 1952), 

(Leppanen, 2004) and the other models of self-

organizing systems. 

2 GENERAL DESCRIPTION OF 

THE MODEL 

The suggested model is based on the distributed 

dynamical system widely known as oscillating 

active media (Mikhailov, 1990). In this media, each 

element is considered as an oscillator (linear or non-

linear) interconnected with the other elements. As a 

result, over the media appear the ordered wave 

structures created by the synchronized and 

desynchronized oscillations of the elements. 

In the model, we consider the neurons as 

oscillators that can be (or can be not) connected with 

the other neurons. The interconnected neurons form 

ensembles that act as oscillating systems, and 

separate neurons act as point-like oscillators. The 

last assumption contrasts with the usual assumption 

applied to artificial neural networks, where each 

neuron spikes with respect to the input signals 

received from the other neurons and does not spike 

without such inputs. The scheme of the considered 

network is shown in Figure 1. 

 

Figure 1: The scheme of the network with oscillating 

neurons. 

Notice that similar networks already appeared in the 

studies of the Gorkiy physical school, especially in 

the works by Vedenov et al. (see e.g. Vedenov, Ejov 

and Levchenko, 1987)); the contemporary 

developments in this direction are published in the 

book by Kuzmina et al. (Kuzmina, Manykin and 

Grichuk, 2014). 

The main question that arises in the studies of 

the networks of autonomous oscillating neurons is:  

- what factors lead the neuron to connect with one 

neuron and to avoid connection with the other 

neuron?  

In the other words, 

- what factors lead neurons to assemble and to 

disassemble? 

In the suggested model, we assume that the 

neurons’ interconnections are defined by the 

difference between the entropies of the separate 

neurons and the entropies of the neurons’ ensembles. 

The process of connecting and disconnecting is the 

following. 

Consider two oscillating neurons 𝑖 and 𝑗. The 

equations of their dynamics allow calculation of the 

entropies ℎ𝑖 and ℎ𝑗 of the neurons and the entropy 

ℎ𝑖𝑗 = ℎ𝑗𝑖 of the coupled oscillator that consists of 

the neurons 𝑖 and 𝑗. We postulate that the neurons 𝑖 
and 𝑗 create connection between them if  

 

ℎ𝑖 > ℎ𝑖𝑗   and   ℎ𝑗 ≥ ℎ𝑖𝑗  (1a) 

or 

ℎ𝑗 > ℎ𝑖𝑗   and   ℎ𝑖 ≥ ℎ𝑖𝑗 (1b) 

 

Once been interconnected, the neurons act in pair 

that can create connections with the other neurons 

following the same entropic criterion. At the 

moment when the entropy of the pair ℎ𝑖𝑗 reaches the 

value such that the inequality (1) does not hold, the 

neurons break their connection and continue acting 

separately. The same reasoning is also applied to the 

formation of the neuron’s ensembles that include 

more than two neurons. 

This model was inspired by the considerations of 

the neural networks with mobile neurons (Apolloni, 

Bassis, and Valerio, 2011), especially – by their 

application to the mobile robots control Kagan, 

Rybalov and Ziv, 2016). It does not require external 

learning processes that define the strength of the 

neurons’ interconnections but, in contrast, forms a 

system that reacts to the inputs by changing internal 

structure. 

The model requires formal equations of the 

neurons’ activity and corresponding methods of 

entropy calculation. In the next section, we start with 

the simple model of spiking neuron. 
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3 THE SPIKING NEURON AND 

ITS CONNECTIVITY 

The considered model of the network of oscillating 

neurons assumes that the output of each neuron in 

the network oscillates near some stable value. The 

well-known model of such oscillating neuron was 

suggested by Hodgkin and Huxley who considered 

the dynamics of its electric potential (see e.g. 

(Sterratt, Graham, Gillies and Willshaw, 2011)). 

Starting from the Hodgkin and Huxley model, in 

2003 Izhikevich suggested the simpler model that is 

formulated as follows (Izhikevich, 2003). Denote by 

𝑢 the membrane potential of the neurone and by 𝑣 

the membrane recovery variable that represents the 

negative feedback for 𝑢. Then, the spike of the 

neurone is defined by the system of two equations: 

 
𝑑𝑢

𝑑𝑡
= 0.04𝑢2 + 5𝑢 + 140 − 𝑣 + 𝐼, (2a) 

𝑑𝑣

𝑑𝑡
= 𝑎(𝑏𝑢 − 𝑣), (2b) 

 

with the reset condition 

 

if 𝑢 ≥ 30 then 𝑢 ⟻ 𝑐 and 𝑣 ⟻ 𝑣 + 𝑑. (3) 

 

In the equations, 𝐼 stands for the synaptic currents; 

parameter 𝑎~0.02 is the time scale of the recovery; 

parameter 𝑏~0.2 is the sensitivity of the recovery to 

the fluctuations of the membrane potential; and 

parameters 𝑐~ − 65 and 𝑑~2 are the after-spike 

reset values caused by fast and slow fluctuations of 

the potential, respectively. In the next years, the 

model (2)-(3) was intensively studied and formed a 

basis for dynamical models of neural networks 

(Izhikevich, 2007). 

Let us rewrite the system (2) in the form of the 

oscillator equation that is 

 
𝑑2𝑢

𝑑𝑡2 − 𝛼(1 − 𝛽𝑢)
𝑑𝑢

𝑑𝑡
+ 𝜔𝑢 + 𝑎𝑣 = −

𝑑𝐼

𝑑𝑡
, (4) 

 

where following the values appeared in the system 

(2) 𝛼 = 5, 𝛽 = −0.016 and 𝜔 = 𝑎𝑏. It is clear that 

equation (4) is the equation of non-linear forced 

oscillator with the feedback parameter 𝑎𝑣 and 

external drive −
𝑑𝐼

𝑑𝑡
. 

Equation (4) has the same form as the well-

known van der Pol equation (see e.g. (Klimontovich, 

1991)) and differs from it in the power of 𝑢 in the 

“friction” coefficient: in the van der Pol equation it 

is 𝑢2 and here it is 𝑢1. Nevertheless, because of its 

form and the bounds defined by the reset condition 

(3) this equation is suitable for calculations of the 

entropy developed for the van der Pol equation. 

Now let us consider the external drive −
𝑑𝐼

𝑑𝑡
. In 

the Izhikevich model the variable 𝐼 is defined as a 

synaptic current, or, in the other words, as a variable 

that represents the flow via the neuron’s inputs and 

outputs. Then, the value −
𝑑𝐼

𝑑𝑡
 in the equation (4) 

stands for the changes of the input/output flow that 

completely meets the Kawahara model of neural 

interactions (Kawahara, 1980); but again, notice the 

indicated difference between equation (4) and the 

van der Pol equation. 

In our model, we apply the week coupling 

suggested by Rand and Holmes (Rand and Holmes, 

1980) and define drive −
𝑑𝐼𝑖𝑗

𝑑𝑡
 between neuron 𝑖 with 

the membrane potential 𝑢𝑖 and neuron 𝑗 with the 

membrane potential 𝑢𝑗 as 

 

−
𝑑𝐼𝑖𝑗

𝑑𝑡
= 𝛾𝑖𝑗

′ (𝑢𝑖 − 𝑢𝑗) + 𝛾𝑖𝑗
′′ (

𝑑𝑢𝑖

𝑑𝑡
−

𝑑𝑢𝑗

𝑑𝑡
). (5) 

 

In the considered version of the model, we assume 

that 𝛾𝑖𝑗 = 𝛾𝑖𝑗
′ = 𝛾𝑗𝑖

′ = 𝛾𝑖𝑗
′′ = 𝛾𝑗𝑖

′′. As a result, the 

connectivity between the neurons is defined by the 

single weight parameter 𝛾𝑖𝑗 that also can be 

specified with respect to the entropies of the 

neurons. In the next section we define these 

entropies. 

4 ENTROPY OF THE NEURONS 

AND OF THEIR ENSEMBLES 

Entropy of the neurons of their ensembles is defined 

following the method suggested by Klimontovich; in 

his book (Klimontovich, 1991) this approach is 

considered in details. The idea of the method is as 

follows. 

At first, consider dynamical equation of the 

system as the Langevin equation with certain source 

that describes the random walk. At second, using the 

Fokker-Plank equation, obtain the probability 

distribution of locations and velocities of the 

walking particles. Finally, calculate the entropy of 

this distribution (relatively to the distribution of the 

source used in the Langevin equation) that is the 

entropy of the considered system, in our case – of 

the neuron. 

In the original work, Klimontovich considered 

the van der Pol equation; here we apply this method 

directly to the system (4). 
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For definition of the entropy of separate neuron 

without interactions, we assume that −
𝑑𝐼

𝑑𝑡
= 0. Then, 

the Langevin equation for the equation (4) has the 

following form: 

 
𝑑𝑢

𝑑𝑡
= 𝜉, (6a) 

𝑑𝜉

𝑑𝑡
= 𝛼(1 − 𝛽𝑢)𝜉 + 𝜔𝑢 + 𝑎𝑣 − √𝜎𝐺(𝑡), (6b) 

 

where 𝐺(𝑡) is the stochastic source that is the 

Gaussian noise and 𝜎 is the intensity of the source. 

The term 𝛼(1 − 𝛽𝑢) is a friction coefficient that 

defines dissipation forces and the term 𝜔𝑢 + 𝑎𝑣 

represents potential field that depends on the state of 

the system. 

For this equation, the Fokker-Plan equation of 

the dynamics of distribution 𝑓(𝑢, 𝜉, 𝑡) in the phase 

space (𝑢, 𝜉) is 

 
𝜕𝑓

𝜕𝑡
+ 𝜉

𝜕𝑓

𝜕𝑢
− (𝜔𝑢 + 𝑎𝑣)

𝜕𝑓

𝜕𝜉
=  

=
𝜕

𝜕𝜉
[𝛼(1 − 𝛽𝑢)𝜉𝑓] −

𝜕

𝜕𝜉
[√𝜎𝐺(𝑡)𝑓]. 

(7) 

 

Because of the reset condition (3) it is rather 

problematic to find analytic solution of this 

equation. Nevertheless, it can be shown that it has 

the Gauss-like form: 

 

𝑓(𝜉) =
1

𝑆(𝑢,𝑣,𝜉)
exp(−𝑅(𝑢, 𝑣, 𝜉)), (8) 

 

where strictly positive function 𝑆 depends also on 

the parameter 𝜎 and positive function 𝑅 depends on 

the parameters 𝛼, 𝛽 and 𝜔 (see equation (4)). In 

addition, it is assumed that ∫ 𝑓(𝜉)𝑑𝜉 = 1. 

Finally, the entropy ℎ(𝑓) of the neuron with the 

steady state distribution 𝑓(𝜉) is 

 

ℎ(𝑓) = −𝑘 ∫ 𝑓(𝜉) ln 𝑓(𝜉) 𝑑𝜉, (9) 

 

where 𝑘 > 0 plays a role of the Boltzmann 

coefficient. 

The entropy of the ensemble of the neurons is 

defined using the external drive −
𝑑𝐼

𝑑𝑡
 of the neuron 

by the members of its ensemble. In the case of a pair 

of neurons, it is defined by the equation (5). The 

Fokker-Plank equation for the distribution 

𝑓𝑖(𝜉𝑖 , 𝜉𝑗 , 𝑡) of the neuron 𝑖 acting in pair with the 

neuron 𝑗 is 

 

 

 

𝜕𝑓𝑖

𝜕𝑡
+ 𝜉𝑖

𝜕𝑓𝑖

𝜕𝑢𝑖

− (𝜔𝑖𝑢𝑖 + 𝑎𝑖𝑣𝑖)
𝜕𝑓𝑖

𝜕𝜉𝑖

− 

− (𝛾𝑖𝑗
′ (𝑢𝑖 − 𝑢𝑗) + 𝛾𝑖𝑗

′′(𝜉𝑖 − 𝜉𝑗))
𝜕𝑓𝑖

𝜕𝜉𝑖

= 

=
𝜕

𝜕𝜉𝑖
[𝛼𝑖(1 − 𝛽𝑖𝑢𝑖)𝜉𝑖𝑓𝑖] −

𝜕

𝜕𝜉𝑖
[√𝜎𝑖𝐺(𝑡)𝑓𝑖]. 

(10) 

 

Then, the entropy ℎ𝑖(𝑗) of the neuron 𝑖 biased by the 

neuron 𝑗 is 

 

ℎ𝑖(𝑗) = −𝑘 ∫ 𝑓𝑖(𝜉𝑖 , 𝜉𝑗) ln 𝑓𝑖(𝜉𝑖 , 𝜉𝑗) 𝑑𝜉𝑖 . (11) 

 

where 𝑓𝑖(𝜉𝑖 , 𝜉𝑗) is a steady state distribution over the 

velocities of the neurons 𝑖 and 𝑗. The entropy ℎ𝑗(𝑖) 

of the neuron 𝑗 biased by the neuron 𝑖 is defined by 

the same manner. Another method (Klimontovich, 

1991) of defining the entropies ℎ𝑖(𝑗) and ℎ𝑗(𝑖) is to 

use the Kullback-Leibler entropy. 

Finally, entropy of the neurons ensemble of 𝑁 

neurons (Klimontovich, 1991) is obtained using the 

average distribution 𝑓 ̅that represents the distribution 

of the average velocities 𝜉 ̅of randomly moving (but 

not necessary Brownian) particles. Such distribution 

is governed by the Turing system (Turing, 1952), 

(Leppanen, 2004) of the form 

 
𝜕𝑓̅

𝜕𝑡
= 𝐷𝑓

𝜕2𝑓̅

𝜕𝜉̅2 + 𝜑(𝑢̅, 𝜉̅, 𝑔̅), (12a) 

𝜕𝑔̅

𝜕𝑡
= 𝐷𝑔

𝜕2𝑔̅

𝜕𝜉̅2 + 𝜓(𝑢̅, 𝜉,̅ 𝑓)̅, (12b) 

 

where function 𝑓 ̅ stands for the activator function 

and auxiliary function 𝑔̅ stands for the inhibitor 

function, and the functions 𝜑 and 𝜓 specify the 

positive and negative feedback, respectively. 

Then the entropy of the ensemble is 

 

ℎ(𝑓)̅ = −𝑘 ∫ 𝑓(̅𝜉̅) ln 𝑓(̅𝜉)̅ 𝑑𝜉̅. (13) 

 

These formulas are widely used in statistical 

physics for description of the behaviour of 

elementary particles, but for the description of the 

activity of neural network the idea to use the average 

coordinates and velocities seems to be not the best 

one. More realistic method can be based on the 

distribution of active and non-active neurons as it is 

defined by the methods of population dynamics see 

e.g.  (Kagan, Ben-Gal, 2015). 
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5 NUMERICAL SIMULATIONS 

Numerical simulations illustrate activity of the 

neurons. For the simulations, we directly apply the 

simple numerical schemes to the equations presented 

in the previous section. 

In all simulations, parameters have the values 

indicated in the previous section that are: 𝑎 = 0.02, 

𝑏 = 0.2, 𝑐 = −65 and 𝑑 = 2. These values appear 

in the original paper by Izhikevich (Izhikevich, 

2003). In the other equations we used the parameters 

𝛼 = 5, 𝛽 = −0.016, 𝑠 = 0.01, 𝛾𝑖𝑗
′ = 1, 𝛾𝑖𝑗

′′ = 1 and 

𝑘 = 1. In order to obtain clear illustration of the 

neuron activity, the value of the frequency 𝜔 = 1 

was chosen with respect to the time interval 𝑡 =
0,1,2, … ,50. 

Let us consider the activity of the single neuron. 

Figure 2 shows the graph of the velocity 𝜉(𝑡) and 

the phase portrait of the neuron defined by the 

Langevin equation (6). 

 

Figure 2: The graph of the velocity and the phase portrait 

of a single neuron described by the Langevin equation (6). 

It is seen that the neuron demonstrates the oscillating 

behaviour with certain randomness. 

The next Figure 3 shows evolution of the 

distribution 𝑓(𝑢, 𝜉, 𝑡) in time starting from the 

uniform distribution. 

Evolution of the entropy ℎ(𝑓) starting from the 

last stages of its decreasing is shown in Figure 4. 

As it was expected, the entropy starts with the 

maximal value that corresponds to the uniform 

distribution and exponentially decreases to some 

small value and then oscillates near this value. 

Now, let us consider activity of the pair of 

neurons described by the Fokker-Plank equation 

(10). The first neuron in the pair is the neuron 

considered in the previous simulations and the 

second neuron is defined by the same equations with 

the same values of the parameters. The difference 

between the neurons caused by randomness of the 

values generated by the stochastic sources 𝐺(𝑡). 

 

 

 

Figure 3: Evolution of the distribution 𝑓(𝑢, 𝜉, 𝑡) for a 

single neuron as it is defined by the Fokker-Plank equation 

(7) from the initial uniform distribution. The first graph 

shows the distribution 𝑓(𝑢, 𝜉, 𝑡) at the starting stages, 𝑡 =
3; the second – at the middle, 𝑡 = 25, and the last – at the 

end, 𝑡 = 50, of the trial. 
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Figure 4: Evolution of the entropy ℎ(𝑓) of a single neuron. 

 

 

 

Figure 5: Evolution of the distribution 𝑓1(𝜉1, 𝜉2, 𝑡) of 

neuron 1 acting in pair with neuron 2 as it is defined by 

the Fokker-Plank equation (10). The first graph shows the 

distribution𝑓1(𝜉1, 𝜉2, 𝑡) at the starting stages, 𝑡 = 3; the 

second – at the middle, 𝑡 = 25, and the last – at the end, 

𝑡 = 50. 

Evolution of the distribution 𝑓1(𝜉1, 𝜉2, 𝑡) of 

neuron 1 acting in pair with neuron 2 is shown in 

Figure 5. It is seen that this evolution is similar to 

the evolution of the distribution 𝑓(𝑢, 𝜉, 𝑡) of single 

neuron. 

The entropies ℎ1(𝑓) and ℎ2(𝑓) of the neurons 1 

and 2 acting separately exponentially decrease and 

oscillate near some small value, and the same holds 

with the entropy ℎ1(2) of the neuron 1 biased by the 

neuron 2. However, the velocity of decreasing and 

the frequency of oscillations are different. 

Figure 6 shows the last stages of the decreasing 

of these three entropies and their oscillations. 

 

Figure 6: Last stages of the decreasing of the entropies 

ℎ1(𝑓) (dotted curve) and ℎ2(𝑓) (dashed curve) of the 

neurons 1 and 2, respectively, and of the entropy ℎ1(2) 

(solid curve) of the neuron 1 biased by the neuron 2. 

It is seen that starting from the time 𝑡 ≈ 8, while 

h1(2) ≈ 0.4, both h1(f) > h1(2) and h2(f) > h1(2). 

Hence, following the suggested model of creating 

connections between the neuron’s (see Section 2, 

especially – inequalities (1)), the neurons 1 and 2 

will interconnect and start acting in pair. 

However, at the time 𝑡 ≈ 38 the entropy h1(2) 

of the pair of neurons becomes greater than the 

entropies h1(f) and h2(f) of each of the neurons 

acting separately. Then, the neurons disconnect and 

begin to act separately. 

As indicated above, the neurons ensembles that 

include more than two agents act in the same 

manner, but the entropy of the ensemble should be 

calculated by the other methods, for example, using 

the models population dynamics see e.g.  (Kagan, 

Ben-Gal, 2015). 
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6 CONCLUSIONS 

The considered neural network consists of the 

oscillating mobile neurons that connect and 

disconnect with respect to their entropies and the 

entropy of the ensemble. The states of the neurons 

are defined on the basis of the well-known Hodgkin-

Huxley model that defines the oscillations of the 

neurons’ activity. 

Such definition allows calculation of the entropy 

of the neuron and the neuron’s ensemble using the 

Klimontovich method that is widely used in 

statistical physics. 

The suggested approach contrasts with the 

traditional methods, where the connections between 

the neurons are governed by the external learning 

procedures, and specifies the neurons’ connections 

on the basis of the neurons’ internal properties. 

Numerical simulations confirm feasibility of the 

suggested model and demonstrate the required 

properties of the entropy of separate neurons and of 

the neurons’ ensembles. In particular, it was shown 

that the entropy of the single neuron periodically 

obtains the values greater than the values of the 

entropy of this neuron acting in pair with the other 

neuron. Following the suggested model, connection 

and disconnection of the neurons is governed by this 

inequality. 

The suggested mechanism of assembling / 

disassembling is equal to motion of the neurons 

toward the other neurons or away from them, 

respectively, and the information about the neurons’ 

entropies is transmitted via the glia. 
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