learning on heterogeneous systems. Software avail-
able from tensorflow.org.
Aono, Y., Hayashi, T., Wang, L., Moriai, S., et al. (2017).
Privacy-preserving deep learning: Revisited and en-
hanced. In International Conference on Applications
and Techniques in Information Security, pages 100–
110. Springer.
Backes, M., Berrang, P., Hecksteden, A., Humbert, M.,
Keller, A., and Meyer, T. (2016). Privacy in epigenet-
ics: Temporal linkability of microrna expression pro-
files. In USENIX Security Symposium, pages 1223–
1240.
Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., and
Shmatikov, V. (2018). How to backdoor federated
learning. arXiv preprint arXiv:1807.00459.
Bennett, J., Lanning, S., et al. (2007). The netflix prize.
In Proceedings of KDD cup and workshop, volume
2007, page 35. New York, NY, USA.
Chamatidis, I., Katsika, A., and Spathoulas, G. (2017). Us-
ing deep learning neural networks for ecg based au-
thentication. In Security Technology (ICCST), 2017
International Carnahan Conference on, pages 1–6.
IEEE.
Collobert, R. and Weston, J. (2008). A unified architec-
ture for natural language processing: Deep neural net-
works with multitask learning. In Proceedings of the
25th international conference on Machine learning,
pages 160–167. ACM.
Deng, L., Hinton, G., and Kingsbury, B. (2013). New types
of deep neural network learning for speech recogni-
tion and related applications: An overview. In Acous-
tics, Speech and Signal Processing (ICASSP), 2013
IEEE International Conference on, pages 8599–8603.
IEEE.
Deng, L., Yu, D., et al. (2014). Deep learning: methods
and applications. Foundations and Trends
R
in Signal
Processing, 7(3–4):197–387.
Hitaj, B., Ateniese, G., and Perez-Cruz, F. (2017). Deep
models under the gan: information leakage from col-
laborative deep learning. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Commu-
nications Security, pages 603–618. ACM.
Jing, Y., Bian, Y., Hu, Z., Wang, L., and Xie, X.-Q. S.
(2018). Deep learning for drug design: An artificial
intelligence paradigm for drug discovery in the big
data era. The AAPS journal, 20(3):58.
Kurtulmus, A. B. and Daniel, K. (2018). Trustless ma-
chine learning contracts; evaluating and exchanging
machine learning models on the ethereum blockchain.
arXiv preprint arXiv:1802.10185.
Li, P., Li, J., Huang, Z., Li, T., Gao, C.-Z., Yiu, S.-M., and
Chen, K. (2017). Multi-key privacy-preserving deep
learning in cloud computing. Future Generation Com-
puter Systems, 74:76–85.
Liu, F., Liu, B., Sun, C., Liu, M., and Wang, X. (2013).
Deep learning approaches for link prediction in so-
cial network services. In International Conference
on Neural Information Processing, pages 425–432.
Springer.
Melis, L., Song, C., De Cristofaro, E., and Shmatikov, V.
(2018). Inference attacks against collaborative learn-
ing. arXiv preprint arXiv:1805.04049.
Mendis, G. J., Sabounchi, M., Wei, J., and Roche, R.
(2018). Blockchain as a service: An autonomous,
privacy preserving, decentralized architecture for deep
learning. arXiv preprint arXiv:1807.02515.
Min, S., Lee, B., and Yoon, S. (2017). Deep learn-
ing in bioinformatics. Briefings in bioinformatics,
18(5):851–869.
Na, S.-H. (2015). Deep learning for natural language pro-
cessing and machine translation.
Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic
cash system.
Narayanan, A. and Shmatikov, V. (2008). Robust de-
anonymization of large sparse datasets. In Security
and Privacy, 2008. SP 2008. IEEE Symposium on,
pages 111–125. IEEE.
Noda, K., Yamaguchi, Y., Nakadai, K., Okuno, H. G., and
Ogata, T. (2015). Audio-visual speech recognition us-
ing deep learning. Applied Intelligence, 42(4):722–
737.
Orekondy, T., Oh, S. J., Schiele, B., and Fritz, M.
(2018). Understanding and controlling user link-
ability in decentralized learning. arXiv preprint
arXiv:1805.05838.
Rouhani, B. D., Riazi, M. S., and Koushanfar, F. (2018).
Deepsecure: Scalable provably-secure deep learning.
In 2018 55th ACM/ESDA/IEEE Design Automation
Conference (DAC), pages 1–6. IEEE.
Takabi, H., Hesamifard, E., and Ghasemi, M. (2016). Pri-
vacy preserving multi-party machine learning with ho-
momorphic encryption. In 29th Annual Conference on
Neural Information Processing Systems (NIPS).
Weng, J., Weng, J., Li, M., Zhang, Y., and Luo, W. (2018).
Deepchain: Auditable and privacy-preserving deep
learning with blockchain-based incentive. Technical
report, Cryptology ePrint Archive, Report 2018/679.
2018. Available online: https . . . .
Zeiler, M. D. (2013). Hierarchical convolutional deep
learning in computer vision. PhD thesis, New York
University.
Zhou, Y., Wilkinson, D., Schreiber, R., and Pan, R. (2008).
Large-scale parallel collaborative filtering for the net-
flix prize. In International Conference on Algorith-
mic Applications in Management, pages 337–348.
Springer.
Machine Learning for All: A More Robust Federated Learning Framework
551