Boeva, V., Angelova, M., Lavesson, N., Rosander, O., and
Tsiporkova, E. (2018). Evolutionary clustering tech-
niques for expertise mining scenarios. In Proceedings
of the 10th International Conference on Agents and
Artificial Intelligence, ICAART, Volume 2, Funchal,
Madeira, Portugal, January 16-18, pages 523–530.
Boeva, V., Tsiporkova, E., and Kostadinova, E. (2014).
Analysis of Multiple DNA Microarray Datasets, pages
223–234. Springer Berlin Heidelberg.
Bozzon, A., Brambilla, M., Ceri, S., Silvestri, M., and
Vesci, G. (2013). Choosing the right crowd: Ex-
pert finding in social networks. In Proceedings of the
16th International Conference on Extending Database
Technology, EDBT ’13, pages 637–648. ACM.
Charikar, M., Chekuri, C., Feder, T., and Motwani, R.
(1997). Incremental clustering and dynamic informa-
tion retrieval. In Proc. of the 29th Annual ACM Sym-
posium on Theory of Computing, STOC ’97, pages
626–635.
Cheng, C. W., Chanani, N., Venugopalan, J., Maher, K., and
Wang, M. D. (2013). An icu clinical decision support
system using association rule mining. Translational
Engineering in Health and Medicine, IEEE, 1(2):8–
17.
Fa, R. and Nandi, A. K. (2012). Smart: Novel self splitting-
merging clustering algorithm. In European Signal
Processing Conference, Bucharest, Romania, August,
27-32. IEEE.
Gionis, A., Mannila, H., and Tsaparas, P. (2007). Clustering
aggregation. ACM Transaction of Knowledge Discov-
ery Data, 1(1).
Goder, A. and Filkov, V. (2008). Consensus clustering al-
gorithms: Comparison and refinement. In ALENEX,
pages 109–234.
Golino, H. F., de Brito Amaral, L. S., Duarte, S. F. P., and
et al. (2014). Predicting increased blood pressure us-
ing machine learning. Journal of Obesity, 2014.
Hristoskova, A., Tsiporkova, E., Tourw
´
e, T., Buelens, S.,
Putman, M., and Turck, F. D. (2013). A graph-based
disambiguation approach for construction of an expert
repository from public online sources. In ICAART
2013 - Proceedings of the 5th International Confer-
ence on Agents and Artificial Intelligence, Volume 2,
Barcelona, Spain, 15-18 February, pages 24–33.
Jaccard, P. (1912). The distribution of flora in the alpine
zone. New Phytologist, 11:37–50.
Jain, K. A. and Dubes, C. R. (1988). Algorithms for Clus-
tering Data. Prentice-Hall, Inc.
Larsen, B. and Aone, C. (1999). Fast and effective text min-
ing using linear-time document clustering. In Proc.
of the 5th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD’99,
pages 16–22. ACM.
Li, Y., Feng, X., Zhang, M., Zhou, M., Wang, N., and
Wangb, L. (2016). Clustering of cardiovascular be-
havioral risk factors and blood pressure among people
diagnosed with hypertension: a nationally representa-
tive survey in china. Sci Rep., 6:27627.
Lin, S., Hong, W., Wang, D., and Li, T. (2017). A survey
on expert finding techniques. Journal of Intelligent
Information Systems, 49:255–279.
Lughofer, E. (2012). A dynamic split-and-merge approach
for evolving cluster models. Evolving Systems, 3:135–
151.
Menasalvas, E. R., Tu
˜
nas, M. J., Bermejo, G., Gonzalo,
C. M., Rodr
´
ıguez-Gonz
´
alez, A., Zanin, M., Pedro, C.
G. D., M
´
endez, M., Zaretskaia, O., Rey, J., Parejo,
C., Bermudez, L. J. C., and Provencio, M. (2018).
Profiling lung cancer patients using electronic health
records. Journal of Medical Systems, 42:1–10.
O’Callaghan, L., Mishra, N., Meyerson, A., Guha, S., and
Motwani, R. (2001). Streaming-data algorithms for
high-quality clustering. In Proceedings of IEEE In-
ternational Conference on Data Engineering, pages
685–694.
Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to
the interpretation and validation of cluster analysis.
Journal of Computational and Applied Mathematics,
20:53–65.
Sayers, E. (2010). A General Introduction to the E-utilities.
In: Entrez Programming Utilities Help [Internet].
Bethesda (MD): National Center for Biotechnology
Information (US).
Singh, H. S., Singh, R., Malhotra, A., and Kaur, M. (2013).
Developing a biomedical expert finding system using
medical subject headings. In Healthcare informatics
research, 19(4): 243–249.
Stankovic, M., Jovanovic, J., and Laublet, P. (2011). Linked
data metrics for flexible expert search on the open
web. In Proceedings of the 8th Extended Semantic
Web Conference on The Semantic Web: Research and
Applications - Volume Part I, ESWC’11, pages 108–
123. Springer-Verlag.
Tsiporkova, E. and Tourw
´
e, T. (2011). Tool support
for technology scouting using online sources. In
Advances in Conceptual Modeling. Recent Develop-
ments and New Directions, pages 371–376. Springer
Berlin Heidelberg.
von Luxburg, U., Williamson, R. C., and Guyon, I. (2012).
Clustering: Science or art? In Proceedings of ICML
Workshop on Unsupervised and Transfer Learning,
volume 27 of Proceedings of Machine Learning Re-
search, pages 65–79.
Wang, M., Huang, V., and Bosneag, A.-M. C. (2018). A
novel split-merge-evolve k clustering algorithm. In
IEEE 4th International Conference on Big Data Com-
puting Service and Applications (BigDataService),
Bamberg, Germany, March 26-29.
Xiang, Q., Mao, Q., Chai, K. M. A., Chieu, H. L., Tsang,
I. W., and Zhao, Z. (2012). A split-merge framework
for comparing clusterings. In ICML, pages 1055-
1062.
Zhou, J. and Shui, Y. (2015). MeSHSim: MeSH(Medical
Subject Headings) Semantic Similarity Measures. R
package version 1.4.0.
ICAART 2019 - 11th International Conference on Agents and Artificial Intelligence
346