Table 5: CPU time for 25 jobs, two machines.
α = 0.1 α = 0.5 α = 0.9
Instance Avg. CPU(s) Avg. CPU(s) Avg. CPU(s)
Tao1R1 130.69 89.78 122.66
Tao1R3 120.01 146.64 148.64
Tao1R5 94.19 123.81 259.42
Tao1R7 114.16 174.75 568.06
Tao1R9 134.41 172.25 461.29
Tao3R1 112.58 160.54 358.55
Tao3R3 97.51 142.8 492.49
Tao3R5 141.19 163.15 330.12
Tao3R7 117.34 160.33 189.83
Tao3R9 100.38 68.21 78.84
Tao5R1 89.53 88.82 281.69
Tao5R3 93.56 86.06 259.5
Tao5R5 70.34 112.47 158.87
Tao5R7 89.2 89.77 188.48
Tao5R9 125.8 115.44 440.91
Tao7R1 73.28 91.76 159.64
Tao7R3 80.9 85.39 322.09
Tao7R5 116.16 123.9 243.05
Tao7R7 110.08 193.51 322.81
Tao7R9 88.09 158.97 281.59
Tao9R1 101.87 138.27 255.47
Tao9R3 147.58 185.53 255.07
Tao9R5 112.69 88.8 74.32
Tao9R7 100.9 135.96 279.13
Tao9R9 77.43 148.42 84.86
Avg. 105.59 129.81 264.7
set of scheduling benchmark instances providing the
optimal solution within short computational time for
the set of small and moderate sized instances. For the
biggest instances the computational effort increases,
calling for the development of a tailored heuristic ap-
proach, that could be a promising avenue for future
research.
REFERENCES
Atakan, S., B
¨
ulb
¨
ul, K., and Noyan, N. (2017). Minimizing
value-at-risk in single-machine scheduling. Annals of
Operations Research, 248(1-2):25–73.
Bertsimas, D. and Sim, M. (2004). The price of robustness.
Operations research, 52(1):35–53.
Blazewicz, J., Dror, M., and Weglarz, J. (1991). Mathe-
matical programming formulations for machine sche-
duling: A survey. European Journal of Operational
Research, 51(3):283–300.
Bougeret, M., Pessoa, A. A., and Poss, M. (2018). Robust
scheduling with budgeted uncertainty. Discrete App-
lied Mathematics.
Bruni, M.E., Di Puglia Pugliese, L., Beraldi, P., and Guer-
riero, F. (2018a). A two-stage stochastic programming
model for the resource constrained project scheduling
problem under uncertainty. pages 194–200. SciTe-
Press.
Bruni, M.E., Pugliese, L. D. P., Beraldi, P., and Guerriero, F.
(2017). An adjustable robust optimization model for
the resource-constrained project scheduling problem
with uncertain activity durations. Omega, 71:66 – 84.
Bruni, M.E., Pugliese, L. D. P., Beraldi, P., and Guerriero, F.
(2018b). A computational study of exact approaches
for the adjustable robust resource-constrained project
scheduling problem. Computers and Operations Re-
search, 99:178 – 190.
Chang, Z., Ding, J.-Y., and Song, S. (2019). Distributionally
robust scheduling on parallel machines under moment
uncertainty. European Journal of Operational Rese-
arch, 272(3):832–846.
Chang, Z., Song, S., Zhang, Y., Ding, J.-Y., Zhang, R., and
Chiong, R. (2017). Distributionally robust single ma-
chine scheduling with risk aversion. European Jour-
nal of Operational Research, 256(1):261–274.
Emami, S., Moslehi, G., and Sabbagh, M. (2017). A
benders decomposition approach for order acceptance
and scheduling problem: a robust optimization ap-
proach. Computational and Applied Mathematics,
36(4):1471–1515.
Geramipour, S., Moslehi, G., and Reisi-Nafchi, M. (2017).
Maximizing the profit in customers order acceptance
and scheduling problem with weighted tardiness pen-
alty. Journal of the Operational Research Society,
68(1):89–101.
Nguyen, S. (2016). A learning and optimizing system
for order acceptance and scheduling. The Internati-
onal Journal of Advanced Manufacturing Technology,
86(5-8):2021–2036.
Niu, S., Song, S., Ding, J.-Y., Zhang, Y., and Chiong, R.
(2019). Distributionally robust single machine sche-
duling with the total tardiness criterion. Computers &
Operations Research, 101:13–28.
Oguz, C., Salman, F. S., Yalc¸ın, Z. B., et al. (2010). Order
acceptance and scheduling decisions in make-to-order
systems. International Journal of Production Econo-
mics, 125(1):200–211.
Pereira, J. (2016). The robust (minmax regret) single ma-
chine scheduling with interval processing times and
total weighted completion time objective. Computers
& Operations Research, 66:141–152.
Sarin, S. C., Sherali, H. D., and Liao, L. (2014). Mini-
mizing conditional-value-at-risk for stochastic sche-
duling problems. Journal of Scheduling, 17(1):5–15.
Suwa, H. and Sandoh, H. (2012). Online scheduling in ma-
nufacturing: A cumulative delay approach. Springer
Science & Business Media.
Xu, L., Wang, Q., and Huang, S. (2015). Dynamic order
acceptance and scheduling problem with sequence-
dependent setup time. International Journal of Pro-
duction Research, 53(19):5797–5808.
Xu, X., Cui, W., Lin, J., and Qian, Y. (2013). Robust make-
span minimisation in identical parallel machine sche-
duling problem with interval data. International Jour-
nal of Production Research, 51(12):3532–3548.
A Selective Scheduling Problem with Sequence-dependent Setup Times: A Risk-averse Approach
201