Second, advanced heuristics in the spirit of adaptive
large neighborhood search heuristics may be devised.
REFERENCES
Ahmadi-Javid, A. (2012a). Addendum to: Entropic value-
at-risk: A new coherent risk measure. J. Optimization
Theory and Applications, 155(3):1124–1128.
Ahmadi-Javid, A. (2012b). Entropic value-at-risk: A new
coherent risk measure. J. Optimization Theory and
Applications, 155(3):1105–1123.
Archetti, C., Speranza, M., and Vigo, D. (2013). Vehi-
cle routing problems with profits. WPDEM 2013/3-
Working Papers Department of Economics and Man-
agement University of Brescia Italy.
Balas, E. (1995). The prize collecting traveling salesman
problem. ii: Polyhedral results. Networks, 25:199–
216.
Beraldi, P., Bruni, M. E., Lagan
`
a, D., and Musmanno, R.
(2015a). The mixed capacitated general routing prob-
lem under uncertainty. European Journal of Opera-
tional Research, 240(2):382–392.
Beraldi, P., Bruni, M. E., Lagann
`
a, D., and Musmanno, R.
(2019). The risk-averse traveling repairman problem
with profits. Soft Computing, in press.
Beraldi, P., Bruni, M. E., Manerba, D., and Mansini, R.
(2015b). A stochastic programming approach for the
traveling purchaser problem. IMA Journal of Manage-
ment Mathematics, 28(1):41–63.
Beraldi, P., Bruni, M. E., and Violi, A. (2012). Capital ra-
tioning problems under uncertainty and risk. Compu-
tational Optimization and Applications, 51(3):1375–
1396.
Bruni, M. E., Beraldi, P., and Khodaparasti, S. (2018a). A
fast heuristic for routing in post-disaster humanitar-
ian relief logistics. Transportation Research Procedia,
30:304–313.
Bruni, M. E., Beraldi, P., and Khodaparasti, S. (2018b). A
heuristic approach for the k-traveling repairman prob-
lem with profits under uncertainty. Electronic Notes
in Discrete Mathematics, 69:221–228.
Bruni, M. E., Guerriero, F., and Beraldi, P. (2014). De-
signing robust routes for demand-responsive transport
systems. Transportation Research Part E: Logistics
and Transportation Review, 70(1):1–16.
Campbell, A., Gendreau, M., and Thomas, B. (2011). The
orienteering problem with stochastic travel and ser-
vice times. Annals of Operations Research, 186:61–
81.
Chao, I., Golden, B., and Wasil, E. (1996). A fast and effec-
tive heuristic for the orienteering problem. European
Journal of Operational Research, 88:475–489.
Cominetti, R. and Torrico, A. (2016). Additive consistency
of risk measures and its application to risk-averse rout-
ing in networks. Mathematics of Operations Research,
41(4):1510–1521.
Dell’Amico, M., Maffioli, F., and Sciomachen, A. (1998). A
lagrangian heuristic for the prize collecting travelling
salesman problem. Annals of Operations Research,
81:289–306.
Dell’Amico, M., Maffioli, F., and Varbrand, P. (1995). On
prize-collecting tours and the asymmetric travelling
salesman problem. International Transactions in Op-
erational Resesarch, 2(3):297—-308.
Evers, L., Glorie, K., Van Der Ster, S., Barros, A. I., and
Monsuur, H. (2014). A two-stage approach to the ori-
enteering problem with stochastic weights. Comput-
ers and Operational Research, 43:248–260.
Feillet, D., Dejax, P., and Gendreau, M. (2009). Traveling
salesman problems with profits. Transportation Sci-
ence, 39(2):188–205.
Fischetti, M., Gonz
´
alez, J. S., and Toth, P. (1998). Solv-
ing the orienteering problem through branch-and cut.
INFORMS Journal on Computing, 10:133–148.
Fischetti, M. and Toth, P. (1988). An additive approach for
the optimal solution of the prize-collecting traveling
salesman problem. In Vehicle Routing: Methods and
Studies, page 319–343. B.L. Golden and A.A. Assad,
editors.
Gendreau, M., Laporte, G., and Semet, F. (1998). A tabu
search heuristic for the undirected selective travelling
salesman problem. European Journal of Operational
Research, 106:539–545.
Guerriero, F., BRUNI, M. E., and GRECO, F. (2013). A
hybrid greedy randomized adaptive search heuristic to
solve the dial-a-ride problem. Asia-Pacific Journal of
Operational Research, 30(01):1250046.
JF. Berube, M. G. and Potvin, J. (2009). A branch-and-cut
algorithm for the undirected prize collecting traveling
salesman problem. Networks, 54:56–67.
Klau, G. W., Ljubic, I., Moser, A., Mutzel, P., Neuner,
P., Pferschy, U., Raidl, G. R., and Weiskircher, R.
(2004). Combining a memetic algorithm with inte-
ger programming to solve the prize-collecting steiner
tree problem. In GECCO (1), volume 3102 of Lec-
ture Notes in Computer Science, pages 1304–1315.
Springer.
Leitner, M., Ljubic, I., Gonz
´
alez, J. J. S., and Sinnl, M.
(2017). An algorithmic framework for the exact solu-
tion of tree-star problems. European Journal of Oper-
ational Research, 261(1):54–66.
˙
Ilhan, T., Iravani, S. M. R., and Daskin, M. S. (2008).
The orienteering problem with stochastic profits. IIE
Transactions, 40(4):406–421.
Millar, H. H. and Kiragu, M. (1997). A time-based for-
mulation and upper bounding scheme for the selective
traveling salesperson problem. Journal of the Opera-
tional Research Society, 48:511–518.
Ogryczak, W. and Ruszczy
´
nski, A. Dual stochastic dom-
inance and quantile risk measures. International
Transactions in Operational Research, 9(5):661–680.
Ramesh, R., Yoon, Y.-S., and Karwan, M. (1992). An
optimal algorithm for the orienteering tour problem.
ORSA Journal on Computing, 4:155–165.
Rockafellar, R. T. and Uryasev, S. (2002). Conditional
value-at-risk for general loss distributions. Journal of
Banking and Finance, pages 1443–1471.
Tang, H. and Miller-Hooks, E. (2005). Algorithms for
a stochastic selective travelling salesperson prob-
lem. Journal of the Operational Research Society,
56(4):439–452.
ICORES 2019 - 8th International Conference on Operations Research and Enterprise Systems
466