Brimicombe, A. J. (2005). Cluster detection in point event
data having tendency towards spatially repetitive
events. Proceedings of the 8th Intl. Conf. on
GeoComputation. GeoComputation CD-ROM.
Chainey, S., Tompson, L., & Uhlig, S. (2008). The utility
of hotspot mapping for predicting spatial patterns of
crime. Security journal, 21, 4--28.
Ciaramella, A., Cimino, M.G.C.A., Lazzerini, B.,
Marcelloni, F. (2010). Using Context History to
Personalize a Resource Recommender via a Genetic
Algorithm, Proceedings of the IEEE International
Conference on Intelligent Systems Design and
Applications (ISDA'10), Cairo, Egypt, 2010, pp. 965-
970.
Cimino, M. G. C. A., Lazzerini, B., & Marcelloni, F.
(2006). A novel approach to fuzzy clustering based on
a dissimilarity relation extracted from data using a TS
system. Pattern Recognition, 39(11), 2077-2091.
Cimino, M. G. C. A., Lazzeri, A., Pedrycz, W., & Vaglini,
G. (2018). Using Stigmergy to Distinguish Event-
Specific Topics in Social Discussions. Sensors, pp.
2117.
Dong, X., Suhara, Y., Bozkaya, B., Singh, V. K., Lepri, B.,
& Pentland, A. (2018). Social Bridges in Urban
Purchase Behavior. ACM Transactions on Intelligent
Systems and Technology (TIST), 9(3), 33.
Dong, X., Meyer, J., Shmueli, E., Bozkaya, B., & Pentland,
A. (2018). Methods for quantifying effects of social
unrest using credit card transaction data. EPJ Data
Science, 7, 8.
Fuchs, G., Stange, H., Hecker, D., Andrienko, N., &
Andrienko, G. (2015). Constructing semantic
interpretation of routine and anomalous mobility
behaviors from big data. SIGSPATIAL Special, 27--34.
Hu, Y., Miller, H. J., & Li, X. (2014). Detecting and
analyzing mobility hotspots using surface networks.
Transactions in GIS, 18, 911-935.
Khan, S. F., Bergmann, N., Jurdak, R., Kusy, B., &
Cameron, M. (2017). Mobility in cities: Comparative
analysis of mobility models using Geo-tagged tweets in
Australia. 2017 IEEE 2nd International Conference on
Big Data Analysis (ICBDA) (pp. 816--822). Beijing,
China : IEEE.
Klemm, P., Lawonn, K., Glasser, S., Niemann, U.,
Hegenscheid, K., Volzke, H., & Preim, B. (2016). 3D
regression heat map analysis of population study data.
IEEE transactions on visualization and computer
graphics, 22, 81-90.
Krumme, C., Llorente, A., Cebrian, M., & Moro, E. (2013).
The predictability of consumer visitation patterns.
Scientific reports, 3, 1645.
Liu, Y., Wang, F., Xiao, Y., & Gao, S. (2012). Urban land
uses and traffic ‘source-sink areas’: Evidence from
GPS-enabled taxi data in Shanghai. Landscape and
Urban Planning, 106, 73-87.
Long, Y., & Liu, L. (2016). Transformations of urban
studies and planning in the big/open data era: A review.
International Journal of Image and Data Fusion, 295--
308.
Louail, T., Lenormand, M., Ros, O. G., Picornell, M.,
Herranz, R., Frias-Martinez, E., . . . Barthelemy, M.
(2014). From mobile phone data to the spatial structure
of cities. Scientific reports, 4, 5276.
Marsh, L., & Onof, C. (2008). Stigmergic epistemology,
stigmergic cognition. Cognitive Systems Research, 9(1-
2), 136-149.
Martinez-Urtaza, J., Trinanes, J., Abanto, M., Lozano-
Leon, A., Llovo-Taboada, J., Garcia-Campello, M., . . .
Gonzalez-Escalona, N. (2018). Epidemic Dynamics of
Vibrio parahaemolyticus Illness in a Hotspot of Disease
Emergence, Galicia, Spain. Emerging infectious
diseases, 24, 852.
Niwattanakul, S., Singthongchai, J., Naenudorn, E., &
Wanapu, S. (2013). Using of Jaccard coefficient for
keywords similarity. Proceedings of the International
MultiConference of Engineers and Computer
Scientists, 1.
Oh, J. Y.-J., Cheng, C.-K., Lehto, X. Y., & O’Leary, J. T.
(2004). Predictors of tourists' shopping behaviour:
Examination of socio-demographic characteristics and
trip typologies. Journal of Vacation Marketing, 10,
308--319.
Scholz, R. W., & Lu, Y. (2014). Detection of dynamic
activity patterns at a collective level from large-volume
trajectory data. International Journal of Geographical
Information Science, 28, 946--963.
Senaratne, H., Broring, A., Schreck, T., & Lehle, D. (2014).
Moving on Twitter: using episodic hotspot and drift
analysis to detect and characterise spatial trajectories.
Proceedings of the 7th ACM SIGSPATIAL
International Workshop on Location-Based Social
Networks (pp. 23--30). Dallas/Fort Worth, TX, USA:
ACM.
Sherman, L. W., Gartin, P. R., & Buerger, M. E. (1989).
Hot spots of predatory crime: Routine activities and the
criminology of place. Criminology, 27, 27-56.
Singh, P., Deschrijver, D., Pissoort, D., & Dhaene, T.
(2013). Accurate hotspot localization by sampling the
near-field pattern of electronic devices. IEEE
Transactions on Electromagnetic Compatibility, 55,
1365--1368.
Singh, V. K., Bozkaya, B., & Pentland, A. (2015). Money
walks: implicit mobility behavior and financial well-
being. PloS one, 10.
Sobolevsky, S., Bojic, I., Belyi, A., Sitko, I., Hawelka, B.,
Arias, J. M., & Ratti, C. (2015). Scaling of city
attractiveness for foreign visitors through big data of
human economical and social media activity. 2015
IEEE international congress on big data (BigData
congress) (pp. 600-607). New York, USA: IEEE.
Sobolevsky, S., Sitko, I., Des Combes, R. T., Hawelka, B.,
Arias, J. M., & Ratti, C. (2014). Money on the move:
Big data of bank card transactions as the new proxy for
human mobility patterns and regional delineation. the
case of residents and foreign visitors in spain. 2014
IEEE International Congress on Big Data (BigData
Congress) (pp. 136--143). Anchorage, Alaska, USA:
IEEE.
ICPRAM 2019 - 8th International Conference on Pattern Recognition Applications and Methods
828