means with support vector regression and a genetic
algorithm. Information Sciences, 233, 25-35.
Batista, G. E., & Monard, M. C. (2003). An analysis of
four missing data treatment methods for supervised
learning. Applied artificial intelligence, 17(5-6), 519-
533.
Bertsimas, D., Pawlowski, C., & Zhuo, Y. D. (2017).
From predictive methods to missing data imputation:
An optimization approach. The Journal of Machine
Learning Research, 18(1), 7133-7171.
Brown, M. L., & Kros, J. F. (2003). Data mining and the
impact of missing data. Industrial Management &
Data Systems, 103(8), 611-621.
Chen, J., & Shao, J. (2000). Nearest neighbor imputation
for survey data. Journal of Official statistics, 16(2),
113.
Christobel, Y. A., & Sivaprakasam, P. (2013). A New
Classwise k Nearest Neighbor (CKNN) method for the
classification of diabetes dataset. International Journal
of Engineering and Advanced Technology, 2(3), 396-
400.
García-Laencina, P. J., Sancho-Gómez, J. L., Figueiras-
Vidal, A. R., & Verleysen, M. (2009). K nearest
neighbours with mutual information for simultaneous
classification and missing data imputation.
Neurocomputing, 72(7-9), 1483-1493.
Gold, M. S., & Bentler, P. M. (2000). Treatments of
missing data: A Monte Carlo comparison of RBHDI,
iterative stochastic regression imputation, and
expectation-maximization. Structural Equation
Modeling, 7(3), 319-355.
Grzymala-Busse, J. W., & Hu, M. (2000, October). A
comparison of several approaches to missing attribute
values in data mining. In International Conference on
Rough Sets and Current Trends in Computing. 378-
385
Huang, X., & Zhu, Q. (2002). A pseudo-nearest-neighbor
approach for missing data recovery on Gaussian
random data sets. Pattern Recognition Letters, 23(13),
1613-1622.
Jeong, I., Kim, D. G., Choi, J. Y., & Ko, J. (2019).
Geometric one-class classifiers using hyper-rectangles
for knowledge extraction. Expert Systems with
Applications, 117, 112-124.
Jonsson, P., & Wohlin, C. (2004, September). An
evaluation of k-nearest neighbour imputation using
likert data. In Software Metrics, 2004. Proceedings.
10th International Symposium on. 108-118
Kim, K. Y., Kim, B. J., & Yi, G. S. (2004). Reuse of
imputed data in microarray analysis increases
imputation efficiency. BMC bioinformatics, 5(1), 160.
Little, R. J., & Rubin, D. B. (2014). Statistical analysis
with missing data. John Wiley & Sons.
McKnight, P. E., McKnight, K. M., Sidani, S., &
Figueredo, A. J. (2007). Missing data: A gentle
introduction. Guilford Press.
Shi, F., Zhang, D., Chen, J., & Karimi, H. R. (2013).
Missing value estimation for microarray data by
Bayesian principal component analysis and iterative
local least squares. Mathematical Problems in
Engineering 2013, 1-5.
Tang, N. S., & Zhao, P. Y. (2013). Empirical likelihood-
based inference in nonlinear regression models with
missing responses at random. Statistics, 47(6), 1141-
1159.
Templ, M., Kowarik, A., & Filzmoser, P. (2011). Iterative
stepwise regression imputation using standard and
robust methods. Computational Statistics & Data
Analysis, 55(10), 2793-2806.
Trivellore E Raghunathan, James M Lepkowski, John Van
Hoewyk, and Peter Solenberger. A multivariate
technique for multiply imputing missing values using
a sequence of regression models. Survey Methodology,
27(1):85-96, 2001
Tutz, G., & Ramzan, S. (2015). Improved methods for the
imputation of missing data by nearest neighbor
methods. Computational Statistics & Data Analysis,
90, 84-99.
Zhang, S. (2012). Nearest neighbor selection for
iteratively kNN imputation. Journal of Systems and
Software, 85(11), 2541-2552.
Zhang, X., Song, X., Wang, H., & Zhang, H. (2008).
Sequential local least squares imputation estimating
missing value of microarray data. Computers in
biology and medicine, 38(10), 1112-1120.
ICORES 2019 - 8th International Conference on Operations Research and Enterprise Systems