ture is proposed. To evaluate those dynamics, a set
of trajectories is evaluated based on a cost function in
each time step. The longitudinal component is com-
posed of a five-part section-wise defined function, to
accelerate to the target velocity of each gap. All so-
lutions outside the drivable area are discarded. The
lateral planning for potentially changing lane is exe-
cuted, dependent on the situation, at a point in the fu-
ture, considering safety distances. The cost function
evaluates the longitudinal and lateral jerk, the num-
ber of parts and the distance to the target point at the
end of the longitudinal component of the trajectory.
Evaluations in MATLAB simulations show that the
Ego stays on the same plan over the whole maneu-
ver, executing the same planning algorithm in every
time step, assuming constant behaviour of surround-
ing traffic. Moreover, a first evaluation of the compu-
tational costs of the algorithm is made.
To reach a higher discretization of one planning
step, the proposed algorithm can easily be paral-
lelised. Also, the gap prediction model can be ex-
tended to consider interactions between road users.
Moreover, for use in real traffic, the model could be
extended to deal with uncertainties in prediction or
perception, to reward driving in less uncertain spaces.
REFERENCES
Gr
¨
undl, M. (2005). Fehler und Fehlverhalten als Ur-
sache von Verkehrsunf
¨
allen und Konsequenzen f
¨
ur
das Unfallvermeidungspotenzial und die Gestaltung
von Fahrerassistenzsystemen. Universit
¨
at Regens-
burg.
Hansen, T., Schulz, M., Knoop, M., and Konigorski,
U. (2016). Trajectory planning for automated lane
changes. In ATZ worldwide, 118(7):60–65.
Heil, T., Lange, A., and Cramer, S. (2016). Adaptive and
efficient lane change path planning for automated ve-
hicles. In 2016 IEEE 19th International Conference
on Intelligent Transportation Systems (ITSC), pages
479–484.
Kesting, A., Treiber, M., and Helbing, D. (2010). En-
hanced intelligent driver model to access the impact
of driving strategies on traffic capacity. In Philo-
sophical Transactions of the Royal Society of London
A: Mathematical, Physical and Engineering Sciences,
368(1928):4585–4605.
Lange, A., Maas, M., Albert, M. Siedersberger, K. H., Ben-
gler, K. (2013). Automatisches Fahren - So komfort-
abel wie m
¨
oglich, so dynamisch wie n
¨
otig. In VDI
Wissensforum.
Lee, J. W. and Litkouhi, B. (2012). A unified framework
of the automated lane centering/changing control for
motion smoothness adaptation. In 2012 15th Interna-
tional IEEE Conference on Intelligent Transportation
Systems, pages 282–287.
McNaughton, M., Urmson, C., Dolan, J. M., and Lee, J. W.
(2011). Motion planning for autonomous driving with
a conformal spatiotemporal lattice. In 2011 IEEE In-
ternational Conference on Robotics and Automation,
pages 4889–4895.
Schwesinger, U., Rufli, M., Furgale, P., and Siegwart, R.
(2013). A sampling-based partial motion planning
framework for system-compliant navigation along a
reference path. In 2013 IEEE Intelligent Vehicles Sym-
posium (IV), pages 391–396.
Sporrer, A., Prell, G., Buck, J., and Schaible, S. (1998). Re-
alsimulation von Spurwechselvorg
¨
angen im Straßen-
verkehr. In Verkehrsunfall und Fahrzeugtechnik,
(36):69–76.
Suh, J. and Yi, K. (2017). A new adaptive uncertainty
propagation method based stochastic model predictive
control for automated driving vehicles. In 2017 Amer-
ican Control Conference (ACC), pages 5660–5665.
Treiber, M. and Kesting, A. (2009). Modeling lane-
changing decisions with mobil. In Traffic and Gran-
ular Flow ’07, pages 211–221, Berlin, Heidelberg.
Springer Berlin Heidelberg.
Ulbrich, S. and Maurer, M. Towards tactical lane change be-
havior planning for automated vehicles. In 2015 IEEE
18th International Conference on Intelligent Trans-
portation Systems, pages 989–995.
Ulbrich, S., Menzel, T., Reschka, A., Schuldt, F., and Mau-
rer, M. (2015). Defining and substantiating the terms
scene, situation, and scenario for automated driving.
In 2015 IEEE 18th International Conference on Intel-
ligent Transportation Systems, pages 982–988.
Wei, J., Snider, J. M., Gu, T., Dolan, J. M., and Litkouhi,
B. (2014). A behavioral planning framework for au-
tonomous driving. In 2014 IEEE Intelligent Vehicles
Symposium Proceedings, pages 458–464.
Werling, M., Ziegler, J., Kammel, S., and Thrun, S. (2010).
Optimal trajectory generation for dynamic street sce-
narios in a frenet frame. In 2010 IEEE International
Conference on Robotics and Automation, pages 987–
993.
VEHITS 2019 - 5th International Conference on Vehicle Technology and Intelligent Transport Systems
290