plex use cases, where besides vehicle tracking addi-
tional refinements are needed, such as object classifi-
cation, safety rules violation detection, etc.
ACKNOWLEDGEMENTS
Scientific research, publication, and presentation are
supported by the ERANet-LAC Project ”Enabling re-
silient urban transportation systems in smart cities”
(RETRACT, ELAC2015/T10-0761).
REFERENCES
Bengio, Y., Goodfellow, I. J., and Courville, A. (2015).
Deep learning. Nature, 521(7553):436–444.
Bhaskar, L., Sahai, A., Sinha, D., Varshney, G., and Jain, T.
(2015). Intelligent traffic light controller using induc-
tive loops for vehicle detection. In Next Generation
Computing Technologies (NGCT), 2015 1st Interna-
tional Conference on, pages 518–522. IEEE.
Chatfield, K., Simonyan, K., Vedaldi, A., and Zisserman,
A. (2014). Return of the devil in the details: Delv-
ing deep into convolutional nets. arXiv preprint
arXiv:1405.3531.
Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014).
Rich feature hierarchies for accurate object detec-
tion and semantic segmentation. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 580–587.
Hong, S., Noh, H., and Han, B. (2015). Decoupled deep
neural network for semi-supervised semantic segmen-
tation. In Advances in neural information processing
systems, pages 1495–1503.
Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D.,
Wang, W., Weyand, T., Andreetto, M., and Adam,
H. (2017). Mobilenets: Efficient convolutional neu-
ral networks for mobile vision applications. arXiv
preprint arXiv:1704.04861.
Huval, B., Wang, T., Tandon, S., Kiske, J., Song, W.,
Pazhayampallil, J., Andriluka, M., Rajpurkar, P.,
Migimatsu, T., Cheng-Yue, R., et al. (2015). An em-
pirical evaluation of deep learning on highway driv-
ing. arXiv preprint arXiv:1504.01716.
Iwasaki, Y., Kawata, S., and Nakamiya, T. (2013). Vehicle
detection even in poor visibility conditions using in-
frared thermal images and its application to road traf-
fic flow monitoring. In Emerging Trends in Comput-
ing, Informatics, Systems Sciences, and Engineering,
pages 997–1009. Springer.
Komasilovs, V., Zacepins, A., Kviesis, A., Pe
˜
na, E., Tejada-
Estay, F., and Estevez, C. (2018). Traffic monitoring
system development in jelgava city, latvia. In Pro-
ceedings of the 4th International Conference on Ve-
hicle Technology and Intelligent Transport Systems
- Volume 1: RESIST,, pages 659–665. INSTICC,
SciTePress.
Lee, C., Lim, Y.-C., Kwon, S., and Lee, J. (2011).
Stereo vision-based vehicle detection using a road fea-
ture and disparity histogram. Optical Engineering,
50(2):027004.
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Doll
´
ar, P., and Zitnick, C. L. (2014).
Microsoft coco: Common objects in context. In Euro-
pean conference on computer vision, pages 740–755.
Springer.
Long, J., Shelhamer, E., and Darrell, T. (2015). Fully con-
volutional networks for semantic segmentation. In
Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 3431–3440.
Mandellos, N. A., Keramitsoglou, I., and Kiranoudis, C. T.
(2011). A background subtraction algorithm for de-
tecting and tracking vehicles. Expert Systems with Ap-
plications, 38(3):1619–1631.
Noh, H., Hongsuck Seo, P., and Han, B. (2016). Image
question answering using convolutional neural net-
work with dynamic parameter prediction. In Proceed-
ings of the IEEE conference on computer vision and
pattern recognition, pages 30–38.
Rivas-L
´
opez, M., Gomez-Sanchez, C. A., Rivera-Castillo,
J., Sergiyenko, O., Flores-Fuentes, W., Rodr
´
ıguez-
Qui
˜
nonez, J. C., and Mayorga-Ortiz, P. (2015). Vehi-
cle detection using an infrared light emitter and a pho-
todiode as visualization system. In Industrial Elec-
tronics (ISIE), 2015 IEEE 24th International Sympo-
sium on, pages 972–975. IEEE.
Sifuentes, E., Casas, O., and Pallas-Areny, R. (2011). Wire-
less magnetic sensor node for vehicle detection with
optical wake-up. IEEE Sensors Journal, 11(8):1669–
1676.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.
Thomessen, E. A. (2017). Advanced vision based vehicle
classification for traffic surveillance system using neu-
ral networks. Master’s thesis, University of Stavanger,
Norway.
Tian, B., Yao, Q., Gu, Y., Wang, K., and Li, Y. (2011).
Video processing techniques for traffic flow monitor-
ing: A survey. In Intelligent Transportation Systems
(ITSC), 2011 14th International IEEE Conference on,
pages 1103–1108. IEEE.
Toshev, A. and Szegedy, C. (2014). Deeppose: Human pose
estimation via deep neural networks. In Proceedings
of the IEEE conference on computer vision and pat-
tern recognition, pages 1653–1660.
Wang, X., Xu, L., Sun, H., Xin, J., and Zheng, N. (2016).
On-road vehicle detection and tracking using mmw
radar and monovision fusion. IEEE Transactions on
Intelligent Transportation Systems, 17(7):2075–2084.
Yang, B. and Lei, Y. (2015). Vehicle detection and
classification for low-speed congested traffic with
anisotropic magnetoresistive sensor. IEEE Sensors
Journal, 15(2):1132–1138.
VEHITS 2019 - 5th International Conference on Vehicle Technology and Intelligent Transport Systems
296