Agarwal, S., Dunagan, J., Jain, N., Saroiu, S., Wolman,
A., and Bhogan, H. (2010). Volley: Automated Data
Placement for Geo-distributed Cloud Services. In
NSDI.
Atrey, A., van Seghbroeck, G., Volckaert, B., and Turck,
F. D. (2018). Scalable data placement of data-
intensive services in geo-distributed clouds. In
CLOSER, pages 497–508.
Bonchi, F., Gionis, A., and Ukkonen, A. (2013). Overlap-
ping correlation clustering. Knowl. Inf. Syst., 35(1):1–
32.
Catalyurek, U. V. (2011). PaToH (Par-
titioning Tool for Hypergraphs).
http://bmi.osu.edu/umit/PaToH/manual.pdf.
Catalyurek, U. V., Boman, E. G., Devine, K. D.,
Bozdag, D., Heaphy, R., and Riesen, L. A. (2007).
Hypergraph-based Dynamic Load Balancing for
Adaptive Scientific Computations. In IPDPS, pages
1–11.
Chervenak, A., Deelman, E., Livny, M., Su, M., Schuler,
R., Bharathi, S., Mehta, G., and Vahi, K. (2007). Data
Placement for Scientific Applications in Distributed
Environments. In GRID.
Ding, Y. and Lu, Y. (2009). Automatic data placement and
replication in grids. In HiPC, pages 30–39.
Ebrahimi, M., Mohan, A., Kashlev, A., and Lu, S. (2015).
BDAP: A Big Data Placement Strategy for Cloud-
Based Scientific Workflows. In BigDataService,
pages 105–114.
Ferdaus, M. H., Murshed, M., Calheiros, R. N., and Buyya,
R. (2017). An algorithm for network and data-aware
placement of multi-tier applications in cloud data cen-
ters. JNCA, 98:65 – 83.
Golab, L., Hadjieleftheriou, M., Karloff, H., and Saha,
B. (2014). Distributed Data Placement to Minimize
Communication Costs via Graph Partitioning. In SS-
DBM, pages 1–12.
Grace, R. K. and Manimegalai, R. (2014). Dynamic replica
placement and selection strategies in data grids— A
comprehensive survey. JPDC, 74(2):2099 – 2108.
Guo, W. and Wang, X. (2013). A data placement strategy
based on genetic algorithm in cloud computing plat-
form. In WISA, pages 369–372.
Han, S., Kim, B., Han, J., K.Kim, and Song, J. (2017).
Adaptive Data Placement for Improving Performance
of Online Social Network Services in a Multicloud
Environment. In Scientific Programming, pages 1–17.
Huguenin, K., Kermarrec, A. M., Kloudas, K., and Ta
¨
ıani,
F. (2012). Content and Geographical Locality in User-
generated Content Sharing Systems. In NOSSDAV,
pages 77–82.
Jiao, L., Li, J., Du, W., and Fu, X. (2014). Multi-objective
data placement for multi-cloud socially aware ser-
vices. In INFOCOM, pages 28–36.
Kosar, T. and Livny, M. (2004). Stork: making data place-
ment a first class citizen in the grid. In ICDCS, pages
342–349.
Kosar, T. and Livny, M. (2005). A framework for reliable
and efficient data placement in distributed computing
systems. JPDC, 65(10):1146–1157.
Li, X., Zhang, L., Wu, Y., Liu, X., Zhu, E., Yi, H., Wang, F.,
Zhang, C., and Yang, Y. (2017). A Novel Workflow-
Level Data Placement Strategy for Data-Sharing Sci-
entific Cloud Workflows. IEEE TSC, PP(99):1–14.
Liu, X. and Datta, A. (2011). Towards Intelligent Data
Placement for Scientific Workflows in Collaborative
Cloud Environment. In IPDPSW, pages 1052–1061.
Nishtala, R., Fugal, H., Grimm, S., Kwiatkowski, M., Lee,
H., Li, H. C., McElroy, R., Paleczny, M., Peek, D.,
Saab, P., Stafford, D., Tung, T., and Venkataramani,
V. (2013). Scaling Memcache at Facebook. In NSDI,
pages 385–398.
Rochman, Y., Levy, H., and Brosh, E. (2013). Re-
source placement and assignment in distributed net-
work topologies. In INFOCOM, pages 1914–1922.
Shabeera, T., Kumar, S. M., Salam, S. M., and Krishnan,
K. M. (2017). Optimizing vm allocation and data
placement for data-intensive applications in cloud us-
ing aco metaheuristic algorithm. IJEST, 20(2):616 –
628.
Shankaranarayanan, P. N., Sivakumar, A., Rao, S., and
Tawarmalani, M. (2014). Performance Sensitive
Replication in Geo-distributed Cloud Datastores. In
DSN, pages 240–251.
White, T. (2012). Hadoop: The Definitive Guide. O’Reilly
Media, Inc.
Yu, B. and Pan, J. (2015). Location-aware associated data
placement for geo-distributed data-intensive applica-
tions. In INFOCOM, pages 603–611.
Yu, B. and Pan, J. (2016). Sketch-based data placement
among geo-distributed datacenters for cloud storages.
In INFOCOM, pages 1–9.
Yu, B. and Pan, J. (2017). A Framework of Hypergraph-
based Data Placement among Geo-distributed Data-
centers. IEEE TSC, PP(99):1–14.
Yu, T., Qiu, J., Reinwald, B., Zhi, L., Wang, Q., and Wang,
N. (2012). Intelligent database placement in cloud en-
vironment. In ICWS, pages 544–551.
Yuan, D., Yang, Y., Liu, X., and Chen, J. (2010). A
data placement strategy in scientific cloud workflows.
FGCS, 26(8):1200 – 1214.
Zaharia, M., Xin, R. S., Wendell, P., Das, T., Armbrust,
M., Dave, A., Meng, X., Rosen, J., Venkataraman, S.,
Franklin, M. J., Ghodsi, A., Gonzalez, J., Shenker, S.,
and Stoica, I. (2016). Apache spark: A unified engine
for big data processing. CACM, 59(11):56–65.
Zhang, J., Chen, J., Luo, J., and Song, A. (2016). Effi-
cient location-aware data placement for data-intensive
applications in geo-distributed scientific data centers.
Tsinghua Science and Technology, 21(5):471–481.
Zhao, Q., Xiong, C., and Wang, P. (2016a). Heuristic data
placement for data-intensive applications in heteroge-
neous cloud. Journal of Electrical and Computer En-
gineering, 2016:1–8.
Zhao, Q., Xiong, C., Zhang, K., Yue, Y., and Yang, J.
(2016b). A data placement algorithm for data inten-
sive applications in cloud. JGDC, 9(2):145–156.
CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science
36