ARIS, 2013, BP Modelling August-Wilhelm Scheer
Springer Science & Business Media, 220.
Branke J, 2012, Evolutionary optimization in dynamic
environments, Springer, 3rd edition.
Hayes K and K. Lavery, 1991, Workflow management
software: the business opportunity. Technical report,
Ovum Ltd, London.
Konig D, N. Lohmann, S. Moser, C. Stahl, and K. Wolf,
2008, Extending the compatibility notion for abstract
WS-BPEL processes, in Proceedings of the 17th
International Conference on World Wide Web, Beijing,
China, pp. 785–794.
Brahimi, M., Bouzidi, L, 2008, la Revue électronique suisse
de science de l’information, Suisse RESSI.
Mejia Bernal J. F., Falcarin P., Morisio M., Dai J, 2010,
Dynamic context-aware BP: a rule-based approach
supported by pattern identification. In: Proceedings of
the ACM Sympo2008, laplied Computing. ACM, 470-
474.
Bouafia Khawla, Molnár Bálint, 2017, Adaptive case
management and dynamic BP modeling a proposal for
document-centric and formal approach. In12th AIS
2017,
Billington. J. & Weber, M. 2003, The Petri net markup
language: concepts, technology, and tools. In
International Conference on Application and Theory of
Petri Nets (pp.483-505). Springer Berlin Heidelberg.
Rosenberg. A, 2010, Dynamic versus static modeling types,
SAP Modelling Handbook, Modelling Standards
accessed: April 27, 2017.
Patel N., Hlupic V., 2001, Dynamic BP Modelling (BPM)
for BP change, International Journal of Simulation:
Systems, Science & Technology 2(2)
Pucher, M. J, 2010, Agile, Ad Hoc, Dynamic, Social or
Adaptive BPM
Kalibatiene D., Vasilecas O, Rusinaite T., 2015,
Implementing a rule-based dynamic BP modelling and
simulation, Electrical, Electronic and Information
Sciences (eStream), Open Conference of. IEEE.
Trinkunas J, Rusinaite T, Vasilecas O, 2015 Research on
improving dynamic BP in HIS, in: 24th International
conference Information Systems Development:
Transforming Healthcare through Information Systems
(ISD2015 proceedings), pp.1-11
Vasilecas O., T. Rusinaite, D. Kalibatiene, 2016, Dynamic
BP and Their Simulation: A Survey, 155 – 166, DOI :
10.3233/978-1-61499-714-6-155 ,Series Frontiers in
Artificial Intelligence and Applications IOS Press
Ebook : Vol: 291: Databases and I S IX ,
Kalibatiene D., Vasilecas O., Lavbič D., 2016, Rule- and
context-based dynamic BPs modelling and simulation
Journal of Systems and Software (JSS), 122, pp.1 -15.
Vasilecas O., Vysockis T. , Rusinait T. ,2017, A goal
Oriented Approach to Dynamic BP simulation, IEEE
4th Workshop on Advances in Information, Electronic
and Electrical Engineering (AIEEE), ISBN
Information: INSPEC Accession , 16604773, DOI:
10.1109/AIEEE.2016.7821817.
Russell N., N, Van Aalst, W. M.P., Ter Hofstede, A. H., &
Wohed, P. 2006, Workflow exception patterns, In
proceeding of the 18th CAiSE, Luxembourg.
Papazoglou W. M., Van der Aalst, and T. Basten, 2002,
Inheritance of workflows: an approach to tackling
problems related to change, vol. 270, no.1-2, pp. 125–
203.
Dadam P and Reichert M., 2009, The ADEPT project: a
decade of research and development for robust and
flexible process support, Volume 23, Issue 2, pp 81– 97
Springer.
Ryuf S.H. Casati,H. Skogsrud, B.Benatallah , and R. Saint-
Paul, 2008, Supporting the dynamic evolution of web
service protocols in service-oriented architectures,”
ACM Trans. the Web, vol. 2, no. 2.
Papazoglou M. P., V. Andrikopoulos, and S. Benbernou,
2011, Managing evolving services, IEEE Software, vol.
28, no. 3, pp. 49–55.
Andrikopoulos V, Benbernou S, and M. P. Papazoglou
2012, On the evolution of services, IEEE Trans.
Software Engineering, vol. 38, no. 3, pp. 609–628.
Wang Y., Yang J., W. Zhao, and J. Su, 2012, Change
impact analysis in service-based BPs, Service Oriented
Computing and Applications, vol. 6, no. 2, pp. 131–
149.
Van der Aalst W. M. Papazoglo, 2011, Process Mining
Discovery, Conformance and Enhancement of BPs.
Springer.
Adams M, 2010, Dynamic workflow. In: Modern BP
automation. Springer, pp 123–145
Yu, Jian et al. 2015 “Model-driven development of adaptive
web service processes with aspects and rules.” J.
Comput. Syst. Sci. 81, 533-552.
Jain P, Yeh P, Z, Verma K., Kass A., Sheth A. 2008.
Enhancing process-adaptation capabilities with web
based corporate radar technologies. In: Proceedings of
the first international workshop on Ontology supported
business intelligence. ACM, 2-7
Lankhorst, 2009, "Enterprise architecture at work:
Modelling, communication and analysis.
Salman A, Ahmad I, Al-Madani S, 2002, Particle swarm
optimization for task assignment problem.
Microprocess Microsyst 26(8):363–371
Van der Aalst ,2016, W.M.P., A.H.M., ter, Hofstede, B.
Kiepuszewski, and A.P. Barros, Workflow Patterns,
Volume 58(1). 1–6
Wörzberger R, and Heer T, 2011, DYPROTO tools for
dynamic BP, International Journal of BPs Integration
and Management, 5.4: pp. 324-343
Zeng L, Flaxer D, H. Chang, and J. J. Jeng, 2002, PLMflow
Dynamic BP Composition and Execution by Rule
Inference, in Technologies for E-Services. Springer
Berlin Heidelberg, pp. 141150
Zachman, J. A. 1987. A framework for IS architecture.
IBM systems journal, 26(3), 276-292. DOI: 10. 1147/sj.
263. 0276.
Bell, M. John Wiley & Sons, 2008. Service-oriented
modeling (SOA): Service analysis, design, and
architecture.