REFERENCES
Allier, S., Sahraoui, H., Sadou, S., and Vaucher, S.
(2010). Restructuring object-oriented applications
into component-oriented applications by using consis-
tency with execution traces. Component-Based Soft-
ware Engineering, pages 216–231.
Allier, S., Sahraoui, H. A., and Sadou, S. (2009). Identi-
fying components in object-oriented programs using
dynamic analysis and clustering. In Proceedings of
the 2009 Conference of the Center for Advanced Stud-
ies on Collaborative Research, pages 136–148. IBM
Corp.
Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefeb-
vre, E. (2008). Fast unfolding of communities in large
networks. Journal of statistical mechanics: theory
and experiment, 2008(10):P10008.
Chiricota, Y., Jourdan, F., and Melanc¸on, G. (2003). Soft-
ware components capture using graph clustering. In
Program Comprehension, 2003. 11th IEEE Interna-
tional Workshop on, pages 217–226. IEEE.
Cui, J. F. and Chae, H. S. (2011). Applying agglomerative
hierarchical clustering algorithms to component iden-
tification for legacy systems. Information and Soft-
ware technology, 53(6):601–614.
Hasheminejad, S. M. H. and Jalili, S. (2015). Ccic: Cluster-
ing analysis classes to identify software components.
Information and Software Technology, 57:329–351.
Kebir, S., Seriai, A.-D., Chardigny, S., and Chaoui, A.
(2012). Quality-centric approach for software compo-
nent identification from object-oriented code. In Soft-
ware Architecture (WICSA) and European Conference
on Software Architecture (ECSA), 2012 Joint Working
IEEE/IFIP Conference on, pages 181–190. IEEE.
Kim, S. D. and Chang, S. H. (2004). A systematic method
to identify software components. In 11th Asia-Pacific
Software Engineering Conference, 2004., pages 538–
545. IEEE.
Lee, J. K., Jung, S. J., Kim, S. D., Jang, W. H., and Ham,
D. H. (2001). Component identification method with
coupling and cohesion. In Eighth Asia-Pacific Soft-
ware Engineering Conference, 2001. APSEC 2001.,
pages 79–86. IEEE.
Leemans, M. and Liu, C. (2017). Xes software event exten-
sion. XES Working Group, pages 1–11.
Lindvall, M. and Muthig, D. (2008). Bridging the software
architecture gap. Computer, 41(6).
Liu, C., van Dongen, B., Assy, N., and van der Aalst, W.
(2016). Component behavior discovery from software
execution data. In International Conference on Com-
putational Intelligence and Data Mining, pages 1–8.
IEEE.
Liu, C., van Dongen, B., Assy, N., and van der Aalst, W.
(2018a). Component interface identification and be-
havior discovery from software execution data. In
26th International Conference on Program Compre-
hension (ICPC 2018), pages 97–107. ACM.
Liu, C., van Dongen, B., Assy, N., and van der Aalst, W.
(2018b). A framework to support behavioral design
pattern detection from software execution data. In
13th International Conference on Evaluation of Novel
Approaches to Software Engineering, pages 65–76.
Liu, C., van Dongen, B., Assy, N., and van der Aalst, W.
(2018c). A general framework to detect behavioral de-
sign patterns. In International Conference on Software
Engineering (ICSE 2018), pages 234–235. ACM.
Liu, C., van Dongen, B., Assy, N., and van der Aalst, W.
(2018d). Software architectural model discovery from
execution data. In 13th International Conference on
Evaluation of Novel Approaches to Software Engi-
neering, pages 3–10.
Luo, J., Jiang, R., Zhang, L., Mei, H., and Sun, J. (2004).
An experimental study of two graph analysis based
component capture methods for object-oriented sys-
tems. In Software Maintenance, 2004. Proceedings.
20th IEEE International Conference on, pages 390–
398. IEEE.
Mancoridis, S., Mitchell, B. S., Chen, Y., and Gansner,
E. R. (1999). Bunch: A clustering tool for the recov-
ery and maintenance of software system structures.
In Software Maintenance, 1999.(ICSM’99) Proceed-
ings. IEEE International Conference on, pages 50–59.
IEEE.
Newman, M. E. (2006). Modularity and community struc-
ture in networks. Proceedings of the national academy
of sciences, 103(23):8577–8582.
Qi, J., Liu, C., Cappers, B., and van de Wetering, H.
(2018). Visual analysis of parallel interval events. In
20th EG/VGTC Conference on Visualization (EuroVis
2018), pages 1–6.
Qin, S., Yin, B.-B., and Cai, K.-Y. (2009). Mining compo-
nents with software execution data. In International
Conference Software Engineering Research and Prac-
tice., pages 643–649. IEEE.
Qu, Y., Guan, X., Zheng, Q., Liu, T., Wang, L., Hou, Y., and
Yang, Z. (2015). Exploring community structure of
software call graph and its applications in class cohe-
sion measurement. Journal of Systems and Software,
108:193–210.
Rotta, R. and Noack, A. (2011). Multilevel local search
algorithms for modularity clustering. Journal of Ex-
perimental Algorithmics (JEA), 16:2–3.
Schaffter, T. (2014). From genes to organisms: Bioin-
formatics System Models and Software. PhD thesis,
´
Ecole Polytechnique F
´
eD
´
erale de Lausanne.
Waltman, L. and Van Eck, N. J. (2013). A smart local mov-
ing algorithm for large-scale modularity-based com-
munity detection. The European Physical Journal B,
86(11):471.
Washizaki, H. and Fukazawa, Y. (2005). A technique for
automatic component extraction from object-oriented
programs by refactoring. Science of Computer pro-
gramming, 56(1-2):99–116.
A General Framework to Identify Software Components from Execution Data
241