REFERENCES
Belleau, F., Nolin, M.-A., Tourigny, N., Rigault, P., and
Morissette, J. (2008). Bio2rdf: towards a mashup to
build bioinformatics knowledge systems. Journal of
biomedical informatics, 41(5):706–716.
Bizer, C., Heath, T., and Berners-Lee, T. (2011). Linked
data: The story so far. In Semantic services, inter-
operability and web applications: emerging concepts,
pages 205–227. IGI Global.
Bizer, C. and Seaborne, A. (2004). D2rq-treating non-
rdf databases as virtual rdf graphs. In Proceed-
ings of the 3rd international semantic web con-
ference (ISWC2004), volume 2004. Proceedings of
ISWC2004.
Corrêa, A. D., Caminha, J. d. R., Souza, C. A. M. d., and
Alves, L. A. (2013). Uma abordagem sobre o uso de
medicamentos nos livros didáticos de biologia como
estratégia de promoção de saúde. Ciência & Saúde
Coletiva, 18:3071–3081.
Hoang, H. H., Cung, T. N.-P., Truong, D. K., Hwang, D.,
and Jung, J. J. (2014). Retracted: Semantic informa-
tion integration with linked data mashups approaches.
International Journal of Distributed Sensor Networks,
10(4):813875.
Jovanovik (2017). Consolidating drug data on a global scale
using linked data. Journal of biomedical semantics,
8(1):3.
Kazi, H., Chowdhry, B., and Memon, Z. (2012). Med-
chatbot: An umls based chatbot for medical stu-
dents. International Journal of Computer Applica-
tions, 55(17).
Konstantinova, N. and Orasan, C. (2013). Interactive ques-
tion answering. In Emerging Applications of Natural
Language Processing: Concepts and New Research,
pages 149–169. IGI Global.
Mendes, P. N., Mühleisen, H., and Bizer, C. (2012). Sieve:
linked data quality assessment and fusion. In Proceed-
ings of the 2012 Joint EDBT/ICDT Workshops, pages
116–123. ACM.
Natsiavas, P., Koutkias, V., and Maglaveras, N. (2015). Ex-
ploring the capacity of open, linked data sources to as-
sess adverse drug reaction signals. In SWAT4LS, pages
224–226.
Natsiavas, P., Maglaveras, N., and Koutkias, V. (2017).
Evaluation of linked, open data sources for mining ad-
verse drug reaction signals. In International Confer-
ence on Internet Science, pages 310–328. Springer.
Nová
ˇ
cek, V., Vandenbussche, P.-Y., and Muñoz, E. (2017).
Using drug similarities for discovery of possible ad-
verse reactions. In AMIA Annual Symposium Proceed-
ings. AMIA.
Pinto, M. C. X., Ferré, F., and Pinheiro, M. L. P. (2012).
Potentially inappropriate medication use in a city of
southeast brazil. Brazilian Journal of Pharmaceutical
Sciences, 48(1):79–86.
Queneau, P., Bannwarth, B., Carpentier, F., Guliana, J.-M.,
Bouget, J., Trombert, B., Leverve, X., Lapostolle, F.,
Borron, S. W., and Adnet, F. (2007). Emergency de-
partment visits caused by adverse drug events. Drug
Safety, 30(1):81–88.
Schultz, A., Matteini, A., Isele, R., Mendes, P. N., Bizer,
C., and Becker, C. (2012). LDIF - A Framework for
Large-Scale Linked Data Integration. In 21st WWW,
Developers Track, page to appear.
Shadbolt, N., Berners-Lee, T., and Hall, W. (2006). The
semantic web revisited. IEEE intelligent systems,
21(3):96–101.
SINITOX (2016). Sistema Nacional de Informações Toxi-
cológicas registro de intoxicações no brasil. Accessed:
2018-09-17.
Sousa, H. W., Silva, J. L., and Neto, M. S. (2008). A im-
portância do profissional farmacêutico no combate à
automedicação no brasil. Revista eletrônica de far-
mácia, 5(1).
Vega-Gorgojo, G., Giese, M., Heggestøyl, S., Soylu, A.,
and Waaler, A. (2016). Pepesearch: Semantic data for
the masses. PloS one, 11(3):e0151573.
Volz, J., Bizer, C., Gaedke, M., and Kobilarov, G. (2009).
Silk-a link discovery framework for the web of data.
LDOW, 538.
ICEIS 2019 - 21st International Conference on Enterprise Information Systems
36