Fortmann, T., Bar-Shalom, Y., and Scheffe, M. (1983).
Sonar tracking of multiple targets using joint proba-
bilistic data association. IEEE journal of Oceanic En-
gineering, 8(3):173–184.
Geiger, A., Lenz, P., Stiller, C., and Urtasun, R. (2013).
Vision meets robotics: The kitti dataset. The Inter-
national Journal of Robotics Research, 32(11):1231–
1237.
Geiger, A., Lenz, P., and Urtasun, R. (2012). Are we ready
for autonomous driving? the kitti vision benchmark
suite. In Conference on Computer Vision and Pattern
Recognition (CVPR).
Geiger, A., Roser, M., and Urtasun, R. (2010). Efficient
large-scale stereo matching. In Computer Vision–
ACCV 2010, pages 25–38. Springer.
Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE
international conference on computer vision, pages
1440–1448.
Hong, S., You, T., Kwak, S., and Han, B. (2015). Online
tracking by learning discriminative saliency map with
convolutional neural network. In International Con-
ference on Machine Learning, pages 597–606.
Hu, W., Li, X., Luo, W., Zhang, X., Maybank, S.,
and Zhang, Z. (2012). Single and multiple object
tracking using log-euclidean riemannian subspace and
block-division appearance model. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
34(12):2420–2440.
Kaestner, R., Maye, J., Pilat, Y., and Siegwart, R. (2012).
Generative object detection and tracking in 3d range
data. In Robotics and Automation (ICRA), 2012
IEEE International Conference on, pages 3075–3081.
IEEE.
Koci
´
c, J., Jovi
ˇ
ci
´
c, N., and Drndarevi
´
c, V. (2018). Sensors
and sensor fusion in autonomous vehicles. In 2018
26th Telecommunications Forum (TELFOR), pages
420–425. IEEE.
Ku, J., Mozifian, M., Lee, J., Harakeh, A., and Waslan-
der, S. (2017). Joint 3d proposal generation and ob-
ject detection from view aggregation. arXiv preprint
arXiv:1712.02294.
Kuhn, H. W. (1955). The hungarian method for the as-
signment problem. Naval research logistics quarterly,
2(1-2):83–97.
Li, Y., Huang, C., and Nevatia, R. (2009). Learning to asso-
ciate: Hybridboosted multi-target tracker for crowded
scene.
Lu, W.-L., Ting, J.-A., Little, J. J., and Murphy, K. P.
(2013). Learning to track and identify players from
broadcast sports videos. IEEE transactions on pattern
analysis and machine intelligence, 35(7):1704–1716.
Luo, H., Yang, Y., Tong, B., Wu, F., and Fan, B. (2018).
Traffic sign recognition using a multi-task convolu-
tional neural network. IEEE Transactions on Intel-
ligent Transportation Systems, 19(4):1100–1111.
Luo, W., Xing, J., Milan, A., Zhang, X., Liu, W., Zhao, X.,
and Kim, T.-K. (2014). Multiple object tracking: A
literature review. arXiv preprint arXiv:1409.7618.
Nillius, P., Sullivan, J., and Carlsson, S. (2006). Multi-target
tracking-linking identities using bayesian network in-
ference. In null, pages 2187–2194. IEEE.
Osborne, P. (2008). The mercator projections.
O
ˇ
sep, A., Hermans, A., Engelmann, F., Klostermann, D.,
Mathias, M., and Leibe, B. (2016). Multi-scale object
candidates for generic object tracking in street scenes.
In Robotics and automation (icra), 2016 ieee interna-
tional conference on, pages 3180–3187. IEEE.
Osep, A., Mehner, W., Mathias, M., and Leibe, B. (2017).
Combined image-and world-space tracking in traffic
scenes. In Robotics and Automation (ICRA), 2017
IEEE International Conference on, pages 1988–1995.
IEEE.
Redmon, J., Divvala, S., Girshick, R., and Farhadi, A.
(2016). You only look once: Unified, real-time object
detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 779–
788.
Reid, D. et al. (1979). An algorithm for tracking multi-
ple targets. IEEE transactions on Automatic Control,
24(6):843–854.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.
Xiang, Y., Alahi, A., and Savarese, S. (2015). Learning to
track: Online multi-object tracking by decision mak-
ing. In Proceedings of the IEEE international confer-
ence on computer vision, pages 4705–4713.
Xing, J., Ai, H., Liu, L., and Lao, S. (2011). Multiple
player tracking in sports video: A dual-mode two-way
bayesian inference approach with progressive obser-
vation modeling. IEEE Transactions on Image Pro-
cessing, 20(6):1652–1667.
Yang, B., Huang, C., and Nevatia, R. (2011). Learning
affinities and dependencies for multi-target tracking
using a crf model. In Computer Vision and Pat-
tern Recognition (CVPR), 2011 IEEE Conference on,
pages 1233–1240. IEEE.
Zhang, L. and van der Maaten, L. (2013). Structure pre-
serving object tracking. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 1838–1845.
Zhou, Y. and Tuzel, O. (2017). Voxelnet: End-to-end learn-
ing for point cloud based 3d object detection. arXiv
preprint arXiv:1711.06396.
Zollh
¨
ofer, M., Stotko, P., G
¨
orlitz, A., Theobalt, C., Nießner,
M., Klein, R., and Kolb, A. (2018). State of the art on
3d reconstruction with rgb-d cameras. In Computer
Graphics Forum, volume 37, pages 625–652. Wiley
Online Library.
VEHITS 2019 - 5th International Conference on Vehicle Technology and Intelligent Transport Systems
318