REFERENCES
Bendechache, M. and Kechadi, M. T. (2015). Distributed
clustering algorithm for spatial data mining. In Spa-
tial Data Mining and Geographical Knowledge Ser-
vices (ICSDM), 2015 2nd IEEE International Confer-
ence on, pages 60–65, Fuzhou, China. IEEE.
Bin, S., Yuan, L., and Xiaoyi, W. (2010). Research on data
mining models for the internet of things. In 2010 In-
ternational Conference on Image Analysis and Signal
Processing, pages 127–132, Zhejiang, China. IEEE.
Brandao, R. d. A. and Goldschmidt, R. R. (2017). Dis-
tributed data clustering in the context of the internet
of things: A data traffic reduction approach. In Pro-
ceedings of the 23rd Brazillian Symposium on Multi-
media and the Web, WebMedia ’17, pages 313–316,
New York, NY, USA. ACM.
Cantoni, V., Lombardi, L., and Lombardi, P. (2006). Chal-
lenges for data mining in distributed sensor networks.
In 18th International Conference on Pattern Recog-
nition (ICPR’06), volume 1, pages 1000–1007, Hong
Kong, China. IEEE.
Chen, F., Deng, P., Wan, J., Zhang, D., Vasilakos, A. V.,
and Rong, X. (2015). Data mining for the inter-
net of things: Literature review and challenges. In-
ternational Journal of Distributed Sensor Networks,
11(8):431047.
Chovatiya, F., Prajapati, P., Vasa, J., and Patel, J. (2018). A
research direction on data mining with iot. In Satapa-
thy, S. C. and Joshi, A., editors, Information and Com-
munication Technology for Intelligent Systems (ICTIS
2017) - Volume 1, pages 183–190, Cham. Springer In-
ternational Publishing.
Cisco (2014). Cisco global cloud index: Forecast and
methodology, 2014 – 2019.
Goldschmidt, R., Bezerra, E., and Passos, E. (2015). Data
Mining: Conceitos, t
´
ecnicas, algoritmos, orientac¸
˜
oes
e aplicac¸
˜
oes. Elsevier Brazil, Rio de Janeiro, Brazil.
Gubbi, J., Buyya, R., Marusic, S., and Palaniswami, M.
(2013). Internet of things (iot): A vision, architec-
tural elements, and future directions. Future Genera-
tion Computer Systems, 29(7):1645 – 1660. Including
Special sections: Cyber-enabled Distributed Comput-
ing for Ubiquitous Cloud and Network Services and
Cloud Computing and Scientific Applications — Big
Data, Scalable Analytics, and Beyond.
Haller, S., Karnouskos, S., and Schroth, C. (2009). The in-
ternet of things in an enterprise context. In Domingue,
J., Fensel, D., and Traverso, P., editors, Future In-
ternet – FIS 2008, pages 14–28, Berlin, Heidelberg.
Springer Berlin Heidelberg.
IDC (2016). 2016 global iot decision maker survey.
Januzaj, E., Kriegel, H.-P., and Pfeifle, M. (2004). DBDC:
Density Based Distributed Clustering, pages 88–105.
Springer Berlin Heidelberg, Berlin, Heidelberg.
Mashayekhi, H., Habibi, J., Khalafbeigi, T., Voulgaris, S.,
and van Steen, M. (2015). Gdcluster: A general de-
centralized clustering algorithm. IEEE Transactions
on Knowledge and Data Engineering, 27(7):1892–
1905.
Miorandi, D., Sicari, S., Pellegrini, F. D., and Chlamtac, I.
(2012). Internet of things: Vision, applications and
research challenges. Ad Hoc Networks, 10(7):1497 –
1516.
Park, E., del Pobil, A. P., and Kwon, S. J. (2018). The role
of internet of things (iot) in smart cities: Technology
roadmap-oriented approaches. Sustainability, 10(5).
Shi, W., Cao, J., Zhang, Q., Li, Y., and Xu, L. (2016). Edge
computing: Vision and challenges. IEEE Internet of
Things Journal, 3(5):637–646.
ICEIS 2019 - 21st International Conference on Enterprise Information Systems
570