REFERENCES
Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-
Fei, L., and Savarese, S. (2016). Social LSTM: Hu-
man trajectory prediction in crowded spaces. In 2016
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE.
Bartoli, F., Lisanti, G., Ballan, L., and Del Bimbo, A.
(2017). Context-aware trajectory prediction. arXiv
preprint arXiv:1705.02503.
Bengio, Y., Courville, A., and Vincent, P. (2013). Represen-
tation learning: A review and new perspectives. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 35(8):1798–1828.
Bock, J., Beemelmanns, T., Kl
¨
osges, M., and Kotte, J.
(2017). Self-learning trajectory prediction with recur-
rent neural networks at intelligent intersections. In
Proceedings of the 3rd International Conference on
Vehicle Technology and Intelligent Transport Systems.
Chollet, F. et al. (2015). Keras. https://github.com/
fchollet/keras.
Goldhammer, M., Doll, K., Brunsmann, U., Gensler, A.,
and Sick, B. (2014). Pedestrian’s trajectory forecast in
public traffic with artificial neural networks. In 2014
22nd International Conference on Pattern Recogni-
tion. IEEE.
Hatfield, J. and Murphy, S. (2007). The effects of mobile
phone use on pedestrian crossing behaviour at sig-
nalised and unsignalised intersections. Accident Anal-
ysis & Prevention, 39(1):197–205.
Hug, R., Becker, S., H
¨
ubner, W., and Arens, M. (2018).
Particle-based pedestrian path prediction using lstm-
mdl models.
Kim, B., Kang, C. M., Lee, S., Chae, H., Kim, J., Chung,
C. C., and Choi, J. W. (2017). Probabilistic vehicle
trajectory prediction over occupancy grid map via re-
current neural network. CoRR, abs/1704.07049.
Kim, S.-W., Chong, Z. J., Qin, B., Shen, X., Cheng, Z., Liu,
W., and Ang, M. H. (2013). Cooperative perception
for autonomous vehicle control on the road: Motiva-
tion and experimental results. In 2013 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Sys-
tems. IEEE.
Lerner, A., Chrysanthou, Y., and Lischinski, D. (2007).
Crowds by example. In Computer Graphics Forum,
volume 26, pages 655–664. Wiley Online Library.
Park, S., Kim, B., Kang, C. M., Chung, C. C., and Choi,
J. W. (2018). Sequence-to-sequence prediction of ve-
hicle trajectory via lstm encoder-decoder architecture.
arXiv preprint arXiv:1802.06338.
Pellegrini, S., Ess, A., Schindler, K., and van Gool, L.
(2009). You ll never walk alone: Modeling social be-
havior for multi-target tracking. In 2009 IEEE 12th
International Conference on Computer Vision. IEEE.
Pfeiffer, M., Paolo, G., Sommer, H., Nieto, J. I., Siegwart,
R., and Cadena, C. (2017). A data-driven model for
interaction-aware pedestrian motion prediction in ob-
ject cluttered environments. CoRR, abs/1709.08528.
Rauch, A., Klanner, F., Rasshofer, R., and Dietmayer, K.
(2012). Car2x-based perception in a high-level fu-
sion architecture for cooperative perception systems.
In 2012 IEEE Intelligent Vehicles Symposium. IEEE.
Robicquet, A., Sadeghian, A., Alahi, A., and Savarese, S.
(2016). Learning social etiquette: Human trajectory
understanding in crowded scenes. In European con-
ference on computer vision, pages 549–565. Springer.
Schnieder, L., Knake-Langhorst, S., and Gimm, K. (2016).
AIM research intersection: Instrument for traffic de-
tection and behavior assessment for a complex urban
intersection. Journal of large-scale research facilities
JLSRF, 2.
van Arem, B., van Driel, C. J. G., and Visser, R. (2006).
The impact of cooperative adaptive cruise control on
traffic-flow characteristics. IEEE Transactions on In-
telligent Transportation Systems, 7(4):429–436.
Varshneya, D. and Srinivasaraghavan, G. (2017). Human
trajectory prediction using spatially aware deep atten-
tion models. arXiv preprint arXiv:1705.09436.
WHO (2016a). Developing global targets for road safety
risk factors and service delivery mechanisms. http:
//www.who.int/violence_injury_prevention/
road_traffic/road-safety-targets/en/ [ac-
cessed in February 2019].
WHO (2016b). Global status report on road safety
2015. http://www.who.int/violence_injury_
prevention/road_safety_status/2015/en/ [ac-
cessed in February 2019].
VEHITS 2019 - 5th International Conference on Vehicle Technology and Intelligent Transport Systems
326