Table 5: Neural Network parameters selected by GA.
Optimized ANN details Format
Service Layer Number Neuron per layer Transfer functions per Layer
Orders 4 5-3-2-1 tansig-logsig-logsig-purelin
Customers 3 5-3-1 tansig-logsig-purelin
Products 3 5-3-1 tansig-logsig-purelin
Users 3 5-3-1 tansig-tansig-purelin
and build an extended dataset for the aforementioned
application. This will provide a more thorough view
of resources and QoS relation and will result into a
more concrete analysis, taking into account also an
efficiency comparison of various approaches.
ACKNOWLEDGEMENTS
This work has been supported by the CloudPerfect
project and funded from the European Unions Hori-
zon 2020 research and innovation programme, topic
ICT-06-2016: Cloud Computing, under grant agree-
ment No 73225.
REFERENCES
Anastasi, G., Carlini, E., Coppola, M., and Dazzi, P. (2017).
Qos-aware genetic cloud brokering. In Future Gener-
ation Computer Systems 75, 1 - 13.
CloudPerfect: (2017). Enabling cloud orchestration, perfor-
mance and cost efficiency tools for qoe enhancement
and provider ranking. In http://cloudperfect.eu/.
Collazo-Mojica, X., Sadjadi, S., Ejarque, J., and Badia, R.
(2012). Cloud application resource mapping and scal-
ing based on monitoring of qos constraints. In SEKE.
Geeta and Prakash, S. (2017). A review on quality of service
in cloud computing. In Big Data Analytics, Advances
in Intelligent Systems and Computing. Springer Sin-
gapore, pp. 739 748.
Guazzone, M., Anglano, C., and Canonico, M. (2011).
Energy-efficient resource management for cloud com-
puting infrastructures. In IEEE Third International
Conference on Cloud Computing Technology and Sci-
ence, pp. 424 431.
Kousiouris, G., Kyriazis, D., Gogouvitis, S., Menychtas, A.,
Konstanteli, K., and Varvarigou (2011). Translation
of application-level terms to resource-level attributes
across the cloud stack layers. In IEEE Symposium
on Computers and Communications (ISCC), pp. 153
160.
Kousiouris, G., Menychtas, A., Kyriazis, D., Gogouvitis,
S., and Varvarigou, T. (2014). Dynamic, behavioral-
based estimation of resource provisioning based on
high-level application terms in cloud platforms. In Fu-
ture Generation Computer Systems 32, 27 40.
Kousiouris, G., Menychtas, A., Kyriazis, D., Konstanteli,
K., Gogouvitis, S., Katsaros, G., and Varvarigou, T.
(2013). Parametric design and performance analy-
sis of a decoupled service-oriented prediction frame-
work based on embedded numerical software. In IEEE
Transactions on Services Computing 6, 511 524.
Kritikos, K., Magoutis, K., and Plexousakis, D. (2016).
Towards knowledge-based assisted iaas selection. In
IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), pp. 431 439.
Papagianni, C., Leivadeas, A., Papavassiliou, S., M. V.,
Cervell-Pastor, C., and Monje, A. (2013). On the op-
timal allocation of virtual resources in cloud comput-
ing networks. In EEE Transactions on Computers 62,
1060 1071.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., and Duch-
esnay, E. (2011). Scikit-learn: Machine learning in
python. In Journal of Machine Learning Research 12,
2825 2830.
Psychas, A., Violos, J., Aisopos, F., Evangelinou, A.,
Kousiouris, G.and Bouras, I. V. T., Xidas, G., Char-
ilas, D., and Stavroulas, Y. (2018). Cloud toolkit for
provider assessment, optimized application cloudifi-
cation and deployment on iaas. In Future Generation
Computer Systems.
Ran, Y., Yang, J., and Zhang, S., X. H. (2017). ynamic
iaas computing resource provisioning strategy with
qos constraint. In IEEE Transactions on Services
Computing 10, 190 202.
Reig, G., Alonso, J., and Guitart, J. (2010). Prediction of
job resource requirements for deadline schedulers to
manage high-level slas on the cloud. In Ninth IEEE
International Symposium on Network Computing and
Applications, pp. 162 167.
Sun, Y., White, J., Eade, S., and Schmidt, D. (2017). Roar:
A qos-oriented modeling framework for automated
cloud resource allocation and optimization. In Jour-
nal of Systems and Software 116, 146 161.
Wu, L., G. S. B. R. (2011). Sla-based resource alloca-
tion for software as a service provider (saas) in cloud
computing environments. In Proceedings of the 2011
11th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, CCGRID 11. IEEE Com-
puter Society, Washington, DC, USA, pp. 195 204.
CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science
270