REFERENCES
Allamanis, M., Barr, E. T., Bird, C., and Sutton, C. (2015).
Suggesting accurate method and class names. In Pro-
ceedings of the 2015 10th Joint Meeting on Founda-
tions of Software Engineering, pages 38–49. ACM.
Allamanis, M., Barr, E. T., Devanbu, P., and Sutton, C.
(2017). A survey of machine learning for big code
and naturalness. arXiv preprint arXiv:1709.06182.
Briand, L. C. (2003). Software documentation: how much
is enough? In Software Maintenance and Reengi-
neering, 2003. Proceedings. Seventh European Con-
ference on, pages 13–15. IEEE.
Callison-Burch, C., Osborne, M., and Koehn, P. (2006). Re-
evaluation the role of bleu in machine translation re-
search. In 11th Conference of the European Chapter
of the Association for Computational Linguistics.
De Lucia, A., Di Penta, M., Oliveto, R., Panichella, A.,
and Panichella, S. (2012). Using ir methods for la-
beling source code artifacts: Is it worthwhile? In Pro-
gram Comprehension (ICPC), 2012 IEEE 20th Inter-
national Conference on, pages 193–202. IEEE.
de Souza, S. C. B., Anquetil, N., and de Oliveira, K. M.
(2005). A study of the documentation essential to
software maintenance. In Proceedings of the 23rd an-
nual international conference on Design of communi-
cation: documenting & designing for pervasive infor-
mation, pages 68–75. ACM.
Deshpande, A. and Riehle, D. (2008). The total growth
of open source. In IFIP International Conference on
Open Source Systems, pages 197–209. Springer.
Gelman, B., Hoyle, B., Moore, J., Saxe, J., and Slater,
D. (2018). A language-agnostic model for semantic
source code labeling. In Proceedings of the 1st In-
ternational Workshop on Machine Learning and Soft-
ware Engineering in Symbiosis, pages 36–44. ACM.
Gu, J., Lu, Z., Li, H., and Li, V. (2016). Incorporating copy-
ing mechanism in sequence-to-sequence learning. In
Annual Meeting of the Association for Computational
Linguistics (ACL), 2016. Association for Computa-
tional Linguistics.
Haiduc, S., Aponte, J., and Marcus, A. (2010a). Supporting
program comprehension with source code summariza-
tion. In Proceedings of the 32Nd ACM/IEEE Interna-
tional Conference on Software Engineering-Volume 2,
pages 223–226. ACM.
Haiduc, S., Aponte, J., Moreno, L., and Marcus, A. (2010b).
On the use of automated text summarization tech-
niques for summarizing source code. In Reverse Engi-
neering (WCRE), 2010 17th Working Conference on,
pages 35–44. IEEE.
Hindle, A., Barr, E. T., Su, Z., Gabel, M., and Devanbu, P.
(2012). On the naturalness of software. In Software
Engineering (ICSE), 2012 34th International Confer-
ence on, pages 837–847. IEEE.
Hu, X., Li, G., Xia, X., Lo, D., and Jin, Z. (2018). Deep
code comment generation. In Proceedings of the 26th
Conference on Program Comprehension, pages 200–
210. ACM.
Ibrahim, W. M., Bettenburg, N., Adams, B., and Hassan,
A. E. (2012). On the relationship between comment
update practices and software bugs. Journal of Sys-
tems and Software, 85(10):2293–2304.
Iyer, S., Konstas, I., Cheung, A., and Zettlemoyer, L.
(2016). Summarizing source code using a neural at-
tention model. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), volume 1, pages
2073–2083.
Jean, S., Firat, O., Cho, K., Memisevic, R., and Bengio, Y.
(2015). Montreal neural machine translation systems
for wmt’15. In Proceedings of the Tenth Workshop on
Statistical Machine Translation, pages 134–140.
Kim, Y., Jernite, Y., Sontag, D., and Rush, A. M. (2016).
Character-aware neural language models. In AAAI,
pages 2741–2749.
Ko, A. J., Myers, B. A., Coblenz, M. J., and Aung, H. H.
(2006). An exploratory study of how developers seek,
relate, and collect relevant information during soft-
ware maintenance tasks. IEEE Transactions on soft-
ware engineering, 32(12):971–987.
Ling, W., Lu
´
ıs, T., Marujo, L., Astudillo, R. F., Amir, S.,
Dyer, C., Black, A. W., and Trancoso, I. (2015a).
Finding function in form: Compositional charac-
ter models for open vocabulary word representation.
arXiv preprint arXiv:1508.02096.
Ling, W., Trancoso, I., Dyer, C., and Black, A. W. (2015b).
Character-based neural machine translation. arXiv
preprint arXiv:1511.04586.
Lopes, C. V., Maj, P., Martins, P., Saini, V., Yang, D., Zitny,
J., Sajnani, H., and Vitek, J. (2017). D
´
ej
`
avu: a map
of code duplicates on github. Proceedings of the ACM
on Programming Languages, 1(OOPSLA):84.
Luong, M.-T., Sutskever, I., Le, Q. V., Vinyals, O., and
Zaremba, W. (2014). Addressing the rare word prob-
lem in neural machine translation. arXiv preprint
arXiv:1410.8206.
Matthews, A., Schlinger, E., Lavie, A., and Dyer, C. (2016).
Synthesizing compound words for machine transla-
tion. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), volume 1, pages 1085–1094.
Minelli, R., Mocci, A., and Lanza, M. (2015). I know what
you did last summer: an investigation of how develop-
ers spend their time. In Proceedings of the 2015 IEEE
23rd International Conference on Program Compre-
hension, pages 25–35. IEEE Press.
Movshovitz-Attias, D. and Cohen, W. W. (2013). Natu-
ral language models for predicting programming com-
ments. In Proceedings of the 51st Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 2: Short Papers), volume 2, pages 35–40.
Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002).
Bleu: a method for automatic evaluation of machine
translation. In Proceedings of the 40th annual meeting
on association for computational linguistics, pages
311–318. Association for Computational Linguistics.
Parnas, D. L. (2011). Precise documentation: The key to
A Convolutional Neural Network for Language-Agnostic Source Code Summarization
25