REFERENCES
Acampora, G., Tortora, G., and Vitiello, A. (2016). Com-
parison of Multi-objective Evolutionary Algorithms
for prototype selection in nearest neighbor classifica-
tion. In SSCI 2016, pages 1–8.
Berberidis, D. and Giannakis, G. B. (2015). Data sketch-
ing for tracking large-scale dynamical processes. In
ACSSC 2015, pages 345–349.
Berberidis, D. and Giannakis, G. B. (2017). Data Sketching
for Large-Scale Kalman Filtering. IEEE Transactions
on Signal Processing, 65(14):3688–3701.
Birvinskas, D., Jusas, V., Martisius, I., and Damasevicius,
R. (2012). EEG Dataset Reduction and Feature Ex-
traction Using Discrete Cosine Transform. In 2012
Sixth UKSim/AMSS European Symposium on Com-
puter Modeling and Simulation, pages 199–204.
Bloom, B. H. (1970). Space/Time Trade-offs in Hash
Coding with Allowable Errors. Commun. ACM,
13(7):422–426.
Cormode, G., Garofalakis, M., Haas, P. J., and Jermaine,
C. (2012). Synopses for massive data: Samples, his-
tograms, wavelets, sketches. Foundations and Trends
in Databases, 4(1–3):1–294.
Cormode, G. and Muthukrishnan, S. (2005). An improved
data stream summary: the count-min sketch and its
applications. Journal of Algorithms, 55(1):58–75.
Deutsch, P. (1996). Deflate compressed data format speci-
fication version 1.3. Technical report.
Fahad, A., Alshatri, N., Tari, Z., Alamri, A., Khalil, I.,
Zomaya, A. Y., Foufou, S., and Bouras, A. (2014). A
Survey of Clustering Algorithms for Big Data: Tax-
onomy and Empirical Analysis. IEEE Transactions
on Emerging Topics in Computing, 2(3):267–279.
Flajolet, P., Fusy,
´
E., Gandouet, O., and Meunier, F. (2007).
Hyperloglog: the analysis of a near-optimal cardinal-
ity estimation algorithm. In Discrete Mathematics and
Theoretical Computer Science, pages 137–156.
Garcia, S., Derrac, J., Cano, J., and Herrera, F. (2012).
Prototype Selection for Nearest Neighbor Classifica-
tion: Taxonomy and Empirical Study. IEEE Trans-
actions on pattern analysis and machine intelligence,
34(3):417–435.
Guo, T., Yan, Z., and Aberer, K. (2012). An Adaptive Ap-
proach for Online Segmentation of Multi-dimensional
Mobile Data. In Proceedings of the Eleventh ACM In-
ternational Workshop on Data Engineering for Wire-
less and Mobile Access, pages 7–14. ACM.
Lakshminarasimhan, S., Jenkins, J., Arkatkar, I., Gong, Z.,
Kolla, H., Ku, S. H., Ethier, S., Chen, J., Chang, C. S.,
Klasky, S., Latham, R., Ross, R., and Samatova, N. F.
(2011). ISABELA-QA: Query-driven analytics with
ISABELA-compressed extreme-scale scientific data.
In SC 2011, pages 1–11.
Lemley, J., Jagodzinski, F., and Andonie, R. (2016). Big
Holes in Big Data: A Monte Carlo Algorithm for De-
tecting Large Hyper-Rectangles in High Dimensional
Data. In COMPSAC 2016, pages 563–571.
Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P.,
Tang, J., and Liu, H. (2017). Feature Selection: A
Data Perspective. ACM Comput. Surv., 50(6):94:1–
94:45.
Martinez, A. M. and Kak, A. C. (2001). PCA versus LDA.
IEEE Transactions on pattern analysis and machine
intelligence, 23(2):228–233.
Mukahar, N. and Rosdi, B. A. (2018). Performance com-
parison of prototype selection based on edition search
for nearest neighbor classification. In Proceedings
of the 2018 7th International Conference on Software
and Computer Applications, ICSCA 2018, pages 143–
146. ACM.
Ougiaroglou, S. and Evangelidis, G. (2012). Efficient
Dataset Size Reduction by Finding Homogeneous
Clusters. In Proceedings of the Fifth Balkan Confer-
ence in Informatics, pages 168–173. ACM.
Pan, B., Demiryurek, U., Banaei-Kashani, F., and Sha-
habi, C. (2010). Spatiotemporal Summarization of
Traffic Data Streams. In Proceedings of the ACM
SIGSPATIAL International Workshop on GeoStream-
ing, pages 4–10. ACM.
Pearson, K. (1901). LIII. On lines and planes of closest fit to
systems of points in space. The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of
Science, 2(11):559–572.
Roweis, S. T. and Saul, L. K. (2000). Nonlinear dimension-
ality reduction by locally linear embedding. science,
290(5500):2323–2326.
Samet, H. (1984). The quadtree and related hierarchical
data structures. ACM Comput. Surv., 16(2):187–260.
Sisovic, S., Bakaric, M. B., and Matetic, M. (2018). Re-
ducing Data Stream Complexity by Applying Count-
Min Algorithm and Discretization Procedure. In 2018
IEEE Fourth International Conference on Big Data
Computing Service and Applications (BigDataSer-
vice), pages 221–228.
Tai, K. S., Sharan, V., Bailis, P., and Valiant, G. (2018).
Sketching Linear Classifiers over Data Streams. In
Proceedings of the 2018 International Conference on
Management of Data, pages 757–772. ACM.
Tenenbaum, J. B., De Silva, V., and Langford, J. C. (2000).
A global geometric framework for nonlinear dimen-
sionality reduction. science, 290(5500):2319–2323.
Wang, M., Li, H. X., and Shen, W. (2016). Deep auto-
encoder in model reduction of lage-scale spatiotempo-
ral dynamics. In 2016 International Joint Conference
on Neural Networks (IJCNN), pages 3180–3186.
Wong, L. Z., Chen, H., Lin, S., and Chen, D. C. (2014).
Imputing Missing Values in Sensor Networks Us-
ing Sparse Data Representations. In Proceedings of
the 17th ACM International Conference on Modeling,
Analysis and Simulation of Wireless and Mobile Sys-
tems, pages 227–230. ACM.
Wu, K., Lee, D., Sim, A., and Choi, J. (2017). Statistical
data reduction for streaming data. In 2017 New York
Scientific Data Summit (NYSDS), pages 1–6.
Xue, B., Zhang, M., Browne, W. N., and Yao, X. (2016). A
Survey on Evolutionary Computation Approaches to
Feature Selection. IEEE Transactions on Evolution-
ary Computation, 20(4):606–626.
GISTAM 2019 - 5th International Conference on Geographical Information Systems Theory, Applications and Management
52