6 CONCLUSIONS
In this paper, we continued our previous discussion of
De Novo Programming; see Vlach and Brožová
(2018). We briefly recalled the original approach of
Zelený, rectified some oversights in the alternative
proposal by Shi. Then we presented adaptation of De
Novo methodology for models with capacity,
requirement, and balance constraints, where the
transformation to continuous knapsack problem is not
possible.
Our proposal for Generalized De Novo
Programing is a way to optimize the system design in
more general settings. In particular, it is possible to
deal with more types of constraints and more types of
criteria.
REFERENCES
Babic, Z., Pavic, I., 1996. Multicriterial production
planning by De Novo programming approach.
International Journal of Production Economics, 43(1),
59–66.
Benayoun, R., de Montgolfier, J., Tergny, J., 1971. Linear
Programming with Multiple Objective Functions:
STEP Method (STEM). Mathematical Programming 1,
366-375.
Vlach, M., Brožová, H., 2018. Remarks on De Novo
approach to multiple criteria optimization. In:
Proceedings of the 36th Conference on Mathematical
Methods in Economics. Prague: Faculty of
Management, University of Economics, 618-623.
Fiala, P., 2011. Multiobjective De Novo Linear
Programming. Acta Univ. Palacki. Olomuc., Fac. rer.
nat., Mathematica, 50(2), 29–36.
Huang, Ch.Y., Tzeng, G.H., 2007. Post-Merger High
Technology R&D Human Resources Optimization
through the De Novo Perspective. In: Advances in
Multiple Criteria Decision Making and Human Systems
Management: Knowledge and Wisdom, Ed. Y. Shi et
al., IOS Press, 47-64.
Gigch, J.P., 1991. System Design Modeling and
Metamodeling. Plenum Press: New York and London.
Roostaee, R. Izadikhah, M. Hosseinzadeh Lotfi F., 2012.
An Interactive Procedure to Solve Multi-Objective
Decision-Making Problem: An Improvement to STEM
Method, Journal of Applied Mathematics [online].
Accessible from: https://www.hindawi.com/journals/
jam/2012/324712/.
Shi, Y., 1995. Studies on Optimum-Path Ratios in De Novo
Programming Problems. Computers and Mathematics
with Applications, 29(5), 43–50.
Zelený, M., 2010. Multiobjective Optimization, Systems
Design and De Novo Programming. In: Zopounidis C.,
Pardalos P. M. (eds.): Handbook of Multicriteria
Analysis, Berlin: Springer.
Zelený, M., 2005. The Evolution of Optimality: De Novo
Programming. In: Proceedings of EMO 2005, LNC
3410, ed. C.A. Coello Coello et al., Springer-Verlag,
Berlin-Heidelberg, 1-13.
Zelený, M., 1990a. De Novo Programming. Ekonomicko-
matematický obzor, 26(4), 406–413.
Zelený, M., 1990b. Optimal Given System vs. Designing
Optimal System: The De Novo Programming
Approach. International Journal of General System,
17(4), 295–307.
Zelený, M., 1986. Optimal system design with multiple
criteria: De Novo programming approach. Engi-
neering Costs and Production Economics, 10(2), 89-94.
Zhang, Y. M., Huang, G. H., Zhang, X. D., 2009. Inexact
de Novo programming for water resources systems
planning. European Journal of Operational Research,
199, 531–541.
Zhuang, Z.Y., Hocine, A. 2018. Meta goal programing
approach for solving multi-criteria de Novo programing
problem. European Journal of Operational Research,
265, 228–238.