neural network and obtain good results. The average
angle error on the reprocessed Color Checker Dataset
is reduced by about 60%. In addition, we use the
separable convolution and “Global Average Pooling”
to reduce the computational complexity of the
network and the storage space of the network by
about 86%. Further improvement of estimation
accuracy and estimation of multi-scale illumination
will be the focus of our future work.
REFERENCES
Shi L. Re-processed version of the gehler color constancy
dataset of 568 images[J]. http://www. cs. sfu. ca/~
colour/data/shi_gehler/, 2000.
Buchsbaum, Gershon. "A spatial processor model for object
colour perception." Journal of the Franklin institute
310.1 (1980): 1-26.
Finlayson, Graham D., and Elisabetta Trezzi. "Shades of
gray and colour constancy." Color and Imaging
Conference. Vol. 2004. No. 1. Society for Imaging
Science and Technology, 2004.
Van De Weijer, Joost, Theo Gevers, and Arjan Gijsenij.
"Edge-based color constancy." IEEE Transactions on
image processing 16.9 (2007): 2207-2214.
Brainard D H , Wandell B A . Analysis of the retinex theory
of color vision.[J]. Journal of the Optical Society of
America A-optics Image Science & Vision, 1986,
3(10):1651-1661.
Gijsenij A , Gevers T , Weijer J V . Generalized Gamut
Mapping using Image Derivative Structures for Color
Constancy[J]. International Journal of Computer
Vision, 2010, 86(2-3):127-139.
Gehler P V, Rother C, Blake A, et al. Bayesian color
constancy revisited[C]// IEEE Conference on Computer
Vision & Pattern Recognition. 2008.
Funt B, Xiong W. Estimating Illumination Chromaticity via
Support Vector Regression[C]// Color & Imaging
Conference. 2006.
Bianco S., Cusano C., Schettini R. Single and Multiple
Illuminant Estimation Using Convolutional Neural
Networks[J]. IEEE Transactions on Image Processing,
2017, 26(9):4347-4362.
Hu Y , Wang B , Lin S . FC^4: Fully Convolutional Color
Constancy with Confidence-Weighted Pooling[C]//
IEEE Conference on Computer Vision & Pattern
Recognition. IEEE Computer Society, 2017.
Iandola F N, Han S, Moskewicz M W, et al. SqueezeNet:
AlexNet-level accuracy with 50x fewer parameters and
<0.5MB Model Size[J]. 2016.
Chollet, François. "Xception: Deep learning with depthwise
separable convolutions." arXiv preprint (2017): 1610-
02357.
Lin M , Chen Q , Yan S . Network In Network[J]. Computer
Science, 2013.
Basri, Ronen, and David Jacobs. "Lambertian reflectance
and linear subspaces." Computer Vision, 2001. ICCV
2001. Proceedings. Eighth IEEE International
Conference on. Vol. 2. IEEE, 2001.
Gijsenij A, Gevers T. Color constancy using natural image
statistics and scene semantics[J]. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2011,
33(4): 687-698.
Joze H R V, Drew M S. Exemplar-based color constancy
and multiple illumination[J]. IEEE transactions on
pattern analysis and machine intelligence, 2014, 36(5):
860-873.
Barron J T. Convolutional color constancy[C]//
Proceedings of the IEEE International Conference on
Computer Vision. 2015: 379-387.
Bianco S, Cusano C, Schettini R. Single and multiple
illuminant estimation using convolutional neural
networks[J]. IEEE Transactions on Image Processing,
2017, 26(9): 4347-4362.
Cheng D, Prasad D K, Brown M S. Illuminant estimation
for color constancy: why spatial-domain methods work
and the role of the color distribution[J]. JOSA A, 2014,
31(5): 1049-1058.
Shi W, Loy C C, Tang X. Deep specialized network for
illuminant estimation[C]// European Conference on
Computer Vision. Springer, Cham, 2016: 371-387.
Oh S W, Kim S J. Approaching the computational color
constancy as a classification problem through deep
learning[J]. Pattern Recognition, 2017, 61: 405-416.
Krizhevsky A, Sutskever I, Hinton G E. Imagenet
classification with deep convolutional neural
networks[C]// Advances in neural information
processing systems. 2012: 1097-1105.
He K, Zhang X, Ren S, et al. Deep residual learning for
image recognition[C]// Proceedings of the IEEE
conference on computer vision and pattern recognition.
2016: 770-778.
Simonyan K, Zisserman A. Very deep convolutional
networks for large-scale image recognition[J]. arXiv
preprint arXiv:1409.1556, 2014.
Kingma D P, Ba J. Adam: A method for stochastic
optimization[J]. arXiv preprint arXiv:1412.6980, 2014.
Glorot X, Bengio Y. Understanding the difficulty of
training deep feedforward neural networks[C]//
Proceedings of the thirteenth international conference
on artificial intelligence and statistics. 2010: 249-256.
Zhang X , Zhou X , Lin M , et al. ShuffleNet: An Extremely
Efficient Convolutional Neural Network for Mobile
Devices[J]. 2017.
ICAART 2019 - 11th International Conference on Agents and Artificial Intelligence
886