This day-ahead optimization algorithm requires
either forecast data or data provided by charging
protocol ISO 15118 as input parameters. The protocol
allows accessing the SoC and capacity of the EV
battery. There is currently no EV on the market,
which supports this standard protocol. When
forecasting is used, the forecast errors are quite high
(around 2.5 hours) (Renner, 2018). To reduce the
forecast errors, more application data is needed. The
Mobility2Grid project is working on that subject
(Voß, 2018). The optimization algorithm can also be
used for electric vehicle or bus fleets with known
data, such as the timetables of EVs and load profiles.
In that case, the problem of forecast errors or
inaccessible data of the vehicles does not apply.
ACKNOWLEDGEMENTS
The work in this paper is part of the Mobility2Grid
research project, which is funded by the German
Ministry for Research and Education and supported
by the Deutsche Bahn Energie GmbH.
REFERENCES
Agricola, A., 2011. Demand Side Management in
Deutschland Potenziale und Märkte. Deutsche Energie
Agentur.
Bafa, 2017. Bundesamt für Wirtschaft und
Ausfuhrkontrolle, Förderung von elektrisch
betriebenen Fahrzeugen.
BMWi, 2017. Bundesministerium für Wirtschaft und
Energie, Die nächste Phase der Energiewende,
Erneuerbare Energie-Gesetzt- EEG 2017.
Bräuninger, M., Schnaars, Ph., Teuber, M., 2017.
Implications of Electromobility for the Electricity
Market and CO2 Levels, Volume 97, Issue 10, pp 752–
754.
Friedle, G., Walcher, F., Sträglich, J., Fritz, T.,
Manteufeufell, D., 2018. Blackout E-Mobilität setzt
Netzbetreiber unter Druck. Available at
https://www.oliverwyman.de.
Frohe, H., Löcherer, K., Müller, H., Harriehausen, T.,
Schwarzarzenau, D., 2011. Moeller Grundlagen der
Elektrotechnik, 22. Auflage, Page 59.
Haasz, T., 2017. Entwicklung von Methoden zur Abbildung
von Demand Side Management in einem optimierenden
Energiesystemmodell, University of Stuttgart.
Hart, W., Watson, J., Woodruff, D., 2012. Pyomo -
Optimization Modelling in Python. Bd. 67. Springer
Science Business Media.
Jaiswahl, S. Ballal, M., 2017. Optimal Load Management
of Plug-in Electric Vehicles with Demand Side
Management in Vehicle to Grid Application, IEEE
Transportation Electrification Conference, India.
Karohs, K., Göhlich, D., Lauth, E., 2018. Research Campus
Mobility2Grid, In 2nd E-Mobility Power System
Integration Symposium.
Link, J., 2011. Elektromobilität und erneuerbare Energie:
lokal optimierter Einsatz von netzgekoppelten
Fahrzeugen, Technical University of Dortmund.
Nobis, Ph., Fischhaber, S., 2015. Belastung der Stromnetze
durch Elektromobilität, Forschungsstelle für
Energiewirtschaft e.V.
Pournaras, E., Jung, S., Zhang, H., Fang X., Sanders L.,
2017. Socio-technical Smart Grid Optimization via
Decentralized Charge Control of Electric Vehicles,
Journal of Latex Class Files, Vol. 14, No. 8.
Renner, M., et al., 2018. Electric Vehicle Intraday
Forecasting with Artificial Intelligence, In
Mobility2Grid Lab2Reality Conference.
Seddig, K., Salah, F., Schnug, S., Frank, M., 2015
Dezentrales Lastmanagement von E-Flotten unter
Berücksichtigung der Erzeugungs- und
Netzverfügbarkeit, In ETG- Fachbericht 145, Von
Smart Grid zu Smart Markets, Kassel.
Shao, S., Pipattanasomporn M., Rahman S., 2011. Demand
Response as a Load Shaping Tool in an Intelligent Grid
with Electric Vehicles, IEEE Transactions on Smart
Grid, Vol. 2 No. 4.
Voß, M., Wilhelm, M., Albayrak, S., 2018. Application
Independent Flexibility Assessment and Forecasting for
Controlled EV Charging, In 7th International
Conference on Smart Cities and Green ICT System
(SMARTGREENS).