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Abstract: We propose a novel architecture for the continual representation learning for images, called variational con-
tinual auto-encoder (VCAE). Our approach builds a time-variant parametric model that generates images
close to the observation by using optimized approximate inference over time. When the dataset is sequen-
tially observed, the model efficiently learns underlying representations without forgetting previously acquired
knowledge. Through experiments, we evaluate the development of test log-likelihood over time, which shows
resistance to the catastrophic forgetting. The results show that VCAE has stronger immunity against catas-
trophic forgetting in comparison to the benchmark while VCAE requires much less time for training.

1 INTRODUCTION

Artificial intelligence(AI) should be capable of learn-
ing the knowledge over time-varying domain as bi-
ological agents do in nature (Hassabis et al., 2017).
Continual learning (also called lifelong learning,
incremental learning) is to learn task-independent
knowledge under the environment that contains a
multitude of learning tasks over the agent’s entire life-
time (Thrun and Mitchell, 1995). The main obsta-
cle of continual learning in artificial intelligence is
so-called catastrophic forgetting (McCloskey and Co-
hen, 1989; French, 1999), which is the phenomenon
that the knowledge of previous tasks that have learned
be degenerated as the model learn new tasks. This
evolves as time goes by with the shift of network pa-
rameters toward new Optima for new tasks while the
covariate and data shift happen. Recent researches
have found evidence on how the biological agents
carry out continual learning tasks (Fagot and Cook,
2006; Cichon and Gan, 2015). Since the connection
between artificial intelligence and continual learning
is inspiring over the fields, the solution of catastrophic
forgetting with elegant mathematics has been a chal-
lenge.

Shared representations are helpful to handle multi-
task learning that tasks might arrive over time, or
to apply acquired knowledge to tasks for which few
or no examples are observed but the representation
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of tasks exist. Understanding underlying represen-
tation would make application of machine learning,
ultimately artificial intelligence, easier to understand
the world. In other words, the key for common sense
in the real world that required for AI would be repre-
sentation learning. Popular type of modern represen-
tation learning is the Auto-Encoders (AEs) (Hinton
and Zemel, 1994). These models explicitly define a
feature extractor called encoder parametrized closed
form. Encoder tries to find latent code or representa-
tion from origin data. Then it defines another closed
form parametrized function called the decoder, that
maps latent code to origin space. By minimizing re-
construction loss, it finds the optimal latent represen-
tation of the data. The most popular methods to unsu-
pervised representation learning are Variational Auto-
Encoders (VAEs) (Kingma and Welling, 2013). VAEs
are built on top of standard neural net-based AEs. By
using approximations, it operates efficient inference
and stable learning in directed probabilistic models
for continuous latent variables from intractable poste-
rior distributions and large datasets.

The problem of catastrophic forgetting has been
discussed in different ways entailing each overhead.
The dropout technique (Srivastava et al., 2014) that
regularizes the network parameters shows the ef-
fect of avoiding catastrophic forgetting, including
extra regularization (e.g. L2) helps reduce pertur-
bation during adopting new knowledge (Goodfel-
low et al., 2013). A neuroscience-inspired AI al-
gorithm called Elastic weight consolidation (EWC)
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slows down learning in a subset of network parame-
ters considered as important to previous knowledge,
thereby anchoring these parameters to the former
configurations. It allows the networks to be tuned
for multiple tasks without adjusting network capac-
ity (Kirkpatrick et al., 2017). Recent research intro-
duces a method called Learning without Forgetting
(LrF) that only uses new task data to train the network
while preserving the capacity (Li and Hoiem, 2018).

While online Bayesian inference is a natural way
to perform learning by considering prior knowledge
for posterior knowledge (Ghahramani and Attias,
2000), a simple and general framework for contin-
ual learning that exploits variational inference is pro-
posed, which is called variational continual learning
(VCL) (Nguyen et al., 2018). VCL retains a distribu-
tion over model parameters of previous knowledge.
When new data arrives, it reconfigures the setting of
parameters with the previous posterior and the likeli-
hood of current data. Through Bayesian inference, it
concocts new posterior while regularizing the sense of
previous knowledge not to be seriously perturbed. For
now, VCL is the closest state of the art technique since
it shows outperforms or be on par with the most recent
techniques such as EWC (Kirkpatrick et al., 2017), SI
(Zenke et al., 2017).

Convolutional neural networks (CNNs) are the
processes inspired by the animal’s visual cortex in that
neuronal connection pattern. Each cortical neurons is
only activated in the related visual field known as the
receptive field (Hubel and Wiesel, 1968; LeCun et al.,
1998). AI systems using CNN have already shown
competitive capabilities to human’s performances in
tasks that require coping with images (He et al., 2016;
Szegedy et al., 2017). However, VCL does not em-
ploy convolutional networks structure despite it treats
images.

In this paper, we construct a novel framework that
is resistant and stable against catastrophic forgetting
in continual task, which is an essential advantage for
AI. The major contributions of this work can be sum-
marized as follows.

1. This paper proposes a generative model archi-
tecture with convolution that performs continual
learning, which is referred to as Variational Con-
tinual Auto-Encoder (VCAE).

2. It is shown that VCAE outperforms the generative
model of VCL in terms of training time, optimiza-
tion and resistance against catastrophic forgetting
in large gaps.

2 TECHNICAL BACKGROUND

This section provides background knowledge that is
required to develop our method. We adopt the varia-
tional auto-encoder to learn the representation of each
dataset under the framework of the variational contin-
ual learning, which is a general type of online learning
using Bayes’s Rule.

2.1 Variational Auto Encoder

Let x be the observed data, z latent codes, and p(x,z)
be the joint distribution of them. The prior over latent
codes p(z) is assumed to be Gaussian. We want to
approximate posterior inference p(z|x) parameterized
by θ and the marginal likelihood of the data x with
prior. Given a dataset X = x(1), . . .x(n), we want to
use maximum likelihood to approximate parameters
θ that allows the hidden process to generate artificial
data alike the real data. But both the marginal likeli-
hood pθ(x) =

∫
pθ(z)pθ(x|z)dz and the true posterior

pθ(z|x) = pθ(x|z)pθ(z)/pθ(x) are intractable.
A solution is to introduce an amortized inference

model qφ(z|x) defined by a neural network, named
encoder, to approximate the posterior pθ(z|x). VAEs
jointly train encoder with the probabilistic generative
model, called decoder pθ(x|z). Then the marginal
likelihood is composed of a sum over the marginal
likelihoods of each data point:

log pθ(x(1), . . . ,x(i)) =
n

∑
i=1

log pθ(x(i)), (1)

which can be rewritten as:

log pθ(x(i)) =Eqφ(z|x(i))[log pθ(x(i),z)− logqφ(z|x(i))]

+DKL(qφ(z|x(i))||pθ(z|x(i)))
(2)

Since the KL divergence term DKL has non-
negative value, the first term is called the variational
lower bound on the marginal likelihood of each data
point i. So the loss function of VAE is defined as:

L(θ,φ;x(i)) = Eqφ(z|x(i))[log pθ(x(i),z)− logqφ(z|x(i))]

= Eqφ(z|x(i))[log pθ(x(i)|z)−DKL(qφ(z|x(i))||pθ(z))]

≤ log pθ(x(i))
(3)

The loss function, termed as ELBO, comprises of
the expectation of negative reconstruction error and
the KL divergence term as regularization that matches
the posterior qφ(z|x) to the prior p(z).
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Figure 1: VCAE decoder used for experiments in this paper. For 28x28-sized dataset, 16-dimensional latent variables z is
used as input. As it projected into convolutional decoder, feature maps are employed to sample possible data. The encoder
has same but reverse structure except it does not distinguish head and shared net.

2.2 Variational Continual Learning

From the concept of continual learning, the goal of
VCL is to learn the parameters of the model from se-
quentially arriving datasets Xt = {x

(n)
t }Nt

n=1 where each
consisting of Nt i.i.d. samples and the input domain
might differ over the turns in the sequence of t = 1 : T .
In the perspective of Bayesian, the posterior distribu-
tion is updated by the prior distribution p(θ) after see-
ing T -th datasets:

p(θ|X1:T ) ∝ p(θ)
T

∏
t=1

Nt

∏
nt=1

p(x(nt )
t |θ)

=p(θ)
T

∏
t=1

p(Xt |θ) ∝ p(θ|X1:T−1)p(XT |θ).
(4)

Thus, the posterior after seeing the (T −1)-th dataset
and likelihood of T -th dataset are utilized to update
the posterior after seeing T -th dataset. This is a very
general form of online learning emerged naturally
from Bayes’ rule.

2.3 VCL in Deep Generative Models

Let us consider VAEs as a generative model p(xt |zt)
at the step t, where xt is some continuous or dis-
crete variable and zt is an unobserved continuous ran-
dom variable. To overcome catastrophic forgetting,
VCL divides decoder into two subnetworks: the head
net and the shared net. The head net is replaced
with a new head net as task changes. Hence, this
is called multi-head structure. The latent variables
zt pass through head net first then shared net. The
loss function of VAEs is ELBO stated above (2) that a
lower bound of marginal likelihood consisting of re-
construction error and a regularizer. This was because

the second RHS term at (1) is intractable but negli-
gible by the numerical properties. However, in the
continual learning setting, we can render it to return
parameter uncertainty estimates for weighting the old
parameter’s distribution. Thus, the VCL in genera-
tive models approximates full marginal inference of
the variable x.

Loss function of VCL:

Lt
VCL(qt(θ),φ) =Eqt (θ)[L

t
VAE(θ,φ;Xt)]

−DKL(qt(θ)||qt−1(θ))
(5)

From (3), the loss function of VAE at step t is de-
fined as:

Lt
VAE(θ,φ;Xt) =

Nt

∑
n=1

Lt
VAE(θ,φ;x(n)t )

=
Nt

∑
n=1

E
qφ(z

(n)
t |x

(n)
t )

[
log p(x(n)t |,z

(n)
t ,θ)p(z(n)t )

qφ(z
(n)
t |x

(n)
t )

] (6)

where qt(θ) ≈ p(θ|D1:t), after observing the t-th
dataset. The approximate posterior qt is derived from
the complete form of marginal likelihood optimized
with Maximum Likelihood parameterized by θ and φ.
φ is task-specific parameters of encoder at task t. The
head net’s parameters are used to calculate qt−1(θ) as
part of θ but these are re-initialized at every task t.
For a choice of parameters θ, the whole decoder and
encoder are used.

3 VARIATIONAL CONTINUAL
AUTO-ENCODER

CNNs are designed to understand visual scenes by
replicating biological process and have been success-
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Figure 2: Development of changes of test log-likelihood passing different tasks. The x-axis is task sequence, the y-axis is the
value of the log-likelihood, the higher the better. The generative model of VCL still has resistance for catastrophic forgetting,
but the log-likelihood goes lower as model learn the new task. Meanwhile, VCAE shows almost perfect consistency in overall
tasks.

ful in AI. So, we adopt the convolutional structure
to the VCL and develop a novel framework named
VCAE that memorize sequentially arriving visual
knowledge.

At each stage of learning, convolutional encoder
inference latent variable z concerning visual informa-
tion of the current task. Shared-net in convolutional
decoder stores visual knowledge to generate upcom-
ing task while preserving previously acquired knowl-
edge. And Head-net in convolutional decoder sup-
ports estimating upcoming distribution with respect
to visual information.

After exploration, we found that VCAE shows
better performance in terms of optimization and less
forgetting of the previous task and also stable, faster
training than the generative model of VCL. The struc-
ture is inspired by DCGAN generator (Radford et al.,
2015).

Our approach uses two recent techniques in CNN
architectures. First, global average pooling (GAP)
(Lin et al., 2013) is deployed for the stable training in-
stead of fully connected layers at the end of encoders.
The fully connected layer has two main downsides
than GAP: the larger number of parameter and los-
ing locational information. Hence, it is not necessary
to follow the classic CNN structures that use the FC
layer.

Second, all convolutional net structure (Springen-
berg et al., 2014) replace deterministic spatial pool-
ing (e.g. max pooling) with stridden convolutions.
Max pooling is sufficient when we train classification
model because the dominant features learned by max
pooling are enough clues to classify labels. However,
in terms of reconstruction or generation, information
loss incurred by max pooling is disadvantageous. In
addition, since only selected elements would be op-
timized with backpropagation, bias can be incurred
during optimization. By using all convolutional struc-
ture, we can stably keep whole locational information

in maximum.
For the classification models, selective linear

functions (e.g. ReLU) are fine to abuse over the whole
structure. But in generative models, the bounded
function can make the training stable since it adjusts
the distribution of output. Consequently, we used the
sigmoid function at the end of the shared network in
the decoder, and Tanh function before the GAP in the
encoder.

4 EXPERIMENTS

These experiments compare VCAE to the genera-
tive model of VCL. For the sake of time efficiency,
MNIST dataset is employed as a benchmark. In
VCAE, encoders use Leaky ReLU activation function
except for tanh function before GAP, decoder mainly
utilize ReLU over the head net and the shared net ex-
cluding sigmoid function at the output of shared net.
All the strides are 2. The VCAE decoder is shown
in Figure 1. All the weights of convolutional filters
in encoder were initialized to the normal distribution
with zero mean and standard deviation of 0.02. VCL
employs linear function at the end of encoders and
sigmoid for the shared part of the decoder. The gen-
erative model in VCL used for comparison consists
of 4 intermediate hidden layers each 500 hidden unit
deployed with the latent variable z of 50 nodes. In de-
coder of VCAE and all VCL weights, mean of the
weights are initialized with Xavier method (Glorot
and Bengio, 2010) and the log standard deviation is
set to 10−6. The minibatch size is fixed to 64. Train-
ing epoch and learning rate set to same as 20 itera-
tions for each task with learning rate 0.001, which
was enough to learn generation of MNIST for both
VCL and VCAE. Environmental setup is described in
Appendix A.
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Figure 3: The first row is samples of VCAE, the second row is from VCL. Development of changes in image generation
passing different tasks (left). 100 generated samples of digit 2 right after the model trained for it as task 3 (middle). 100
generated samples of digit 2 after trained all 10 digit tasks. (right). Middle columns show the samples generated right after it
trained are not different in quality. But as the model learn other tasks, VCL start to make image blurry, while VCAE keeps a
solid memory.

4.1 Evaluation

The generative model of VCL and VCAE are quan-
titatively evaluated using two factors: training time
and sampling estimate of the log-likelihood. Natu-
rally, the likelihood goes less as the model learns new
tasks. If this effect is critical, we call it as the catas-
trophic forgetting.

Figure 2 shows how VCAE is stable over the
growth of knowledge the model learns. Test log-
likelihood refers to estimated log marginal likelihood
after training is finished. Since VCL and VCAE are
both strong frameworks against catastrophic forget-
ting, they show no critical memory degeneration. But
VCL model still shows degeneration of likelihood
while VCAE constantly retains it. The initial perfor-
mance of VCAE itself is better than VCL model as
well, but also VCAE is far stronger in holding mem-
ory against vaporization of knowledge. Suffice to say,
no catastrophic forgetting is shown.

Generated samples in Figure 3 are consistent with
the numerical result shown in Figure 2. Generated
samples after the stage in learning of task 3, that is

digit 2 in MNIST, show both generative models are
well trained. But after the models are trained with all
10 digits, generated samples from VCL become vague
while ones generated from VCAE are showing equiv-
alent quality. Moreover, the elapsed time for training
has significant gaps between VCL and VCAE.

Training time comparison is shown in Figure 4.
While VCL take more and more time as it learns new
tasks, VCAE only requires extremely short time con-
stantly over tasks.

5 CONCLUSIONS

We propose a strategy for continual learning deal-
ing with visual tasks. By using twofold variational
inference and the convolutions, VCAE can perform
continual learning that memorizes image represen-
tation of independent tasks over time. VCL frame-
work is extended to VCAE in which experimental re-
sults show VCAE improves the performances with re-
spect to immunity to catastrophic forgetting and sta-
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Figure 4: Training time for each task from 0 to 9. Note that
it is not cumulative time. As going for next task, the gener-
ative model of VCL took much more time while VCAE is
only taking less than 300 sec for every task.

ble training. This allows multiple tasks to be learned
without increasing network capacity nor introducing
new parameters to the networks.

Future works should extend this framework for
high dimensional random variables. Also, VCAE can
be adopted to deep reinforcement learning tasks to
support continual learning at large scale so that agents
can learn new knowledge by itself in real-time.
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EXPERIMENTAL ENVIRONMENT

Experiments are progressed with NVIDIA Geforce
GTX 1080 GPU, Intel R© Core i7-3370 CPU @
3.40GHz x8, Ubuntu 18.04.1 LTS, Tensorflow-GPU.
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