Bechini, A., Marcelloni, F., and Segatori, A. (2016). A
mapreduce solution for associative classification of
big data. Information Sciences, 332:33–55.
Ben-David, A. (2008). Comparison of classification accu-
racy using cohen’s weighted kappa. Expert Systems
with Applications, 34(2):825 – 832.
Chen, H., Chiang, R., and Storey, V. (2012). Business
intelligence and analytics: From big data to big im-
pact. MIS Quarterly: Management Information Sys-
tems, 36(4):1165–1188.
Cohen, W. (1995). Fast effective rule induction. In Ma-
chine Learning: Proceedings of the Twelfth Interna-
tional Conference, pages 1–10.
Cortes, C. and Vapnik, V. (1995). Support vector networks.
Machine Learning, 20:273–297.
Dean, J. and Ghemawat, S. (2008). MapReduce: Simplified
Data Processing on Large Clusters. Communications
of the ACM - 50th anniversary issue: 1958 - 2008,
51(1):107–113.
Han, J. and Kamber, M. (2011). Data Mining: Concepts
and Techniques. Morgan Kaufmann.
Herrera, F., Carmona, C. J., Gonz
´
alez, P., and del Jesus,
M. J. (2011). An overview on subgroup discovery:
foundations and applications. Knowledge and Infor-
mation Systems, 29(3):495–525.
Holte, R. (1993). Very simple classification rules per-
form well on most commonly used datasets. Machine
Learning, 11:63–91.
Lam, C. (2010). Hadoop in Action. Manning Publications
Co., Greenwich, CT, USA, 1st edition.
Li, W., Han, J., and Pei, J. (2001). Cmar: Accurate and effi-
cient classification based on multiple class-association
rules. In 2001 IEEE International Conference on Data
Mining(ICDM01), pages 369–376.
Liu, B., Hsu, W., and Ma, Y. (1998). Integrating classifica-
tion and association rule mining. In 4th International
Conference on Knowledge Discovery and Data Min-
ing(KDD98), pages 80–86.
Liu, B., Ma, Y., and Wong, C. (2001). Classification Using
Association Rules: Weaknesses and Enhancements,
pages 591–601. Kluwer Academic Publishers.
McKay, R. I., Hoai, N. X., Whigham, P. A., Shan, Y., and
O’Neill, M. (2010). Grammar-based genetic program-
ming: a survey. Genetic Programming and Evolvable
Machines, 11:365–396.
Padillo, F., Luna, J. M., and Ventura, S. (2017). Exhaustive
search algorithms to mine subgroups on big data us-
ing apache spark. Progress in Artificial Intelligence,
6(2):145–158.
Quinlan, R. (1993). C4.5: Programs for Machine Learning.
Morgan Kaufmann Publishers, San Mateo, CA.
Segatori, A., Bechini, A., Ducange, P., and Marcelloni,
F. (2018). A distributed fuzzy associative classi-
fier for big data. IEEE Transactions on Cybernetics,
48(9):2656–2669.
Tan, K., Yu, Q., and Ang, J. (2006). A coevolutionary algo-
rithm for rules discovery in data mining. International
Journal of Systems Science, 37(12):835–864.
Thabtah, F. A. (2007). A review of associative classification
mining. Knowledge Engineering Review, 22(1):37–
65.
Triguero, I., Gonz
´
alez, S., Moyano, J. M., Garc
ˆ
ıa, S., Al-
cal
´
a-Fdez, J., Luengo, J., Fern
´
andez, A., del Jes
´
us,
M. J., S
´
anchez, L., and Herrera, F. (2017). Keel 3.0:
an open source software for multi-stage analysis in
data mining. International Journal of Computational
Intelligence Systems, 10(1):1238–1249.
Ventura, S. and Luna, J. M. (2016). Pattern Mining with
Evolutionary Algorithms. Springer International Pub-
lishing.
Ventura, S. and Luna, J. M. (2018). Supervised Descriptive
Pattern Mining. Springer International Publishing.
Venturini, L., Baralis, E., and Garza, P. (2017). Scaling as-
sociative classification for very large datasets. Journal
of Big Data, 4(1).
Yin, X. and Han, J. (2003). Cpar: Classification based
on predictive association rules. In 3rd SIAM Inter-
national Conference on Data Mining(SDM03), pages
331–335.
Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S.,
and Stoica, I. (2010). Spark: Cluster computing with
working sets. In Proceedings of the 2nd USENIX
Conference on Hot Topics in Cloud Computing, Hot-
Cloud’10, Berkeley, CA, USA.
IoTBDS 2019 - 4th International Conference on Internet of Things, Big Data and Security
102