Breiman, L. (1996). Bagging predictors. Machine learning,
24(2):123–140.
Buschjaeger, S., Morik, K., and Schmidt, M. (2017). Sum-
mary extraction on data streams in embedded sys-
tems. In ECML Conference Workshop IoT Large Scale
Learning from Data Streams.
Codeca, L., Frank, R., and Engel, T. (2015). Luxembourg
sumo traffic (lust) scenario: 24 hours of mobility for
vehicular networking research. In IEEE VNC, pages
1–8.
Cormen, T. H., Stein, C., Rivest, R. L., and Leiserson, C. E.
(2001). Introduction to Algorithms. McGraw-Hill
Higher Education, 2nd edition.
Deisenroth, M. P. and Ng, J. W. (2015). Distributed gaus-
sian processes. In International Conference on Ma-
chine Learning (ICML 2015).
Gong, X. and Wang, F. (2002). Three improvements
on knn-npr for traffic flow forecasting. In Intelli-
gent Transportation Systems, 2002. Proceedings. The
IEEE 5th International Conference on, pages 736–
740. IEEE.
Habel, L., Molina, A., Zaksek, T., Kersting, K., and
Schreckenberg, M. (2016). Traffic simulations with
empirical data: How to replace missing traffic flows?
In Traffic and Granular Flow’15, pages 491–498.
Springer.
Hoang, T., Hoang, Q., and Low, B. (2015). A unifying
framework of anytime sparse gaussian process regres-
sion models with stochastic variational inference for
big data. In ICML, pages 569–578.
Krajzewicz, D., Erdmann, J., Behrisch, M., and Bieker,
L. (2012). Recent development and applications of
SUMO - Simulation of Urban MObility. International
Journal On Advances in Systems and Measurements,
5(3&4):128–138.
Lam, W. H., Tang, Y., and Tam, M.-L. (2006). Compar-
ison of two non-parametric models for daily traffic
forecasting in hong kong. Journal of Forecasting,
25(3):173–192.
Lawrence, N., Seeger, M., Herbrich, R., et al. (2003). Fast
sparse gaussian process methods: The informative
vector machine. NIPS.
Liebig, T., Piatkowski, N., Bockermann, C., and Morik, K.
(2017). Dynamic route planning with real-time traffic
predictions. Information Systems, 64:258–265.
Liebig, T., Xu, Z., and May, M. (2013). Incorporating mo-
bility patterns in pedestrian quantity estimation and
sensor placement. In Citizen in Sensor Networks,
pages 67–80.
Ma, X., Dai, Z., He, Z., Ma, J., Wang, Y., and Wang, Y.
(2017). Learning traffic as images: a deep convo-
lutional neural network for large-scale transportation
network speed prediction. Sensors, 17(4):818.
Nagel, K. and Schreckenberg, M. (1992). A cellular
automaton model for freeway traffic. Journal de
physique I, 2(12):2221–2229.
Nemhauser, G. L., Wolsey, L. A., and Fisher, M. L. (1978).
An analysis of approximations for maximizing sub-
modular set functions—i. Mathematical Program-
ming, 14(1):265–294.
Ng, J. W. and Deisenroth, M. P. (2014). Hierarchi-
cal mixture-of-experts model for large-scale gaussian
process regression. arXiv preprint arXiv:1412.3078.
Rasmussen, C. and Williams, C. (2006). Gaussian pro-
cesses for machine learning. The MIT Press.
Rieke, M., Bigagli, L., Herle, S., Jirka, S., Kotsev, A.,
Liebig, T., Malewski, C., Paschke, T., and Stasch,
C. (2018). Geospatial iot – the need for event-
driven architectures in contemporary spatial data in-
frastructures. ISPRS International Journal of Geo-
Information, 7(10).
Schnitzler, F., Liebig, T., Mannor, S., Souto, G., Bothe, S.,
and Stange, H. (2014). Heterogeneous stream pro-
cessing for disaster detection and alarming. In IEEE
International Conference on Big Data, pages 914–
923. IEEE Press.
Seeger, M. (2004). Greedy forward selection in the infor-
mative vector machine. Technical report, Technical
report, University of California at Berkeley.
Selby, B. and Kockelman, K. (2011). Spatial prediction
of aadt in unmeasured locations by universal kriging.
Technical report.
Selby, B. F. (2011). Spatial prediction of AADT in unmea-
sured locations by universal kriging and microsimu-
lation of vehicle holdings and car-market pricing dy-
namics. PhD thesis, University of Texas, Austin.
Shen, Y., Ng, A., and Seeger, M. (2006). Fast gaussian
process regression using kd-trees. NIPS.
Zhao, F. and Park, N. (2004). Using geographi-
cally weighted regression models to estimate an-
nual average daily traffic. Transportation Research
Record: Journal of the Transportation Research
Board, (1879):99–107.
ICPRAM 2019 - 8th International Conference on Pattern Recognition Applications and Methods
254