REFERENCES
Barra, S., Casanova, A., Fraschini, M., and Nappi, M.
(2017). Fusion of physiological measures for multi-
modal biometric systems. Multimedia Tools and Ap-
plications, 76(4):4835–4847.
Barra, S., De Marsico, M., Galdi, C., Riccio, D., and We-
chsler, H. (2013). Fame: face authentication for mo-
bile encounter. In Biometric Measurements and Sys-
tems for Security and Medical Applications (BIOMS),
2013 IEEE Workshop on, pages 1–7. IEEE.
Boratto, L., Carta, S., Fenu, G., and Saia, R. (2016). Using
neural word embeddings to model user behavior and
detect user segments. Knowledge-Based Systems,
108:5–14.
Boratto, L., Carta, S., Fenu, G., and Saia, R. (2017).
Semantics-aware content-based recommender sys-
tems: Design and architecture guidelines. Neurocom-
puting, 254:79–85.
Chowdhury, A., Atoum, Y., Tran, L., Liu, X., and Ross,
A. (2018). Msu-avis dataset: Fusing face and voice
modalities for biometric recognition in indoor sur-
veillance videos. In 2018 24th International Con-
ference on Pattern Recognition (ICPR), pages 3567–
3573. IEEE.
Cielniak, G. and Duckett, T. (2003). Person identification
by mobile robots in indoor environments. In Robotic
Sensing, 2003. ROSE’03. 1st International Workshop
on, pages 5–pp. IEEE.
Correa, M., Hermosilla, G., Verschae, R., and Ruiz-del So-
lar, J. (2012). Human detection and identification by
robots using thermal and visual information in domes-
tic environments. Journal of Intelligent & Robotic Sy-
stems, 66(1-2):223–243.
Cosar, S., Coppola, C., Bellotto, N., et al. (2017). Volume-
based human re-identification with rgb-d cameras. In
VISIGRAPP (4: VISAPP), pages 389–397.
Cruz, C., Sucar, L. E., and Morales, E. F. (2008). Real-time
face recognition for human-robot interaction. In Auto-
matic Face & Gesture Recognition, 2008. FG’08. 8th
IEEE International Conference on, pages 1–6. IEEE.
Dom
´
ınguez-Brito, A. C., Cabrera-G
´
amez, J., Hern
´
andez-
Sosa, D., Castrill
´
on-Santana, M., Lorenzo-Navarro,
J., Isern-Gonz
´
alez, J., Guerra-Artal, C., P
´
erez-P
´
erez,
I., Falc
´
on-Martel, A., Hern
´
andez-Tejera, M., and
M
´
endez-Rodr
´
ıguez, J. (2001). Eldi: An agent ba-
sed museum robot. In ServiceRob’2001, European
Workshop on Service and Humanoid Robots, Santo-
rini, Greece.
Faber, F., Bennewitz, M., Eppner, C., G
¨
or
¨
og, A., Gon-
sionr, C., Joho, D., Schreiber, M., and Behnke, S.
(2009). The humanoid museum tour guide Robo-
tinho. In IEEE International Symposium onRobot and
Human Interactive Communication (RO-MAN), pages
891–896.
Fenu, G. and Marras, M. (2018). Controlling user access
to cloud-connected mobile applications by means of
biometrics. IEEE Cloud Computing, 5(4):47–57.
Fenu, G., Marras, M., and Boratto, L. (2018). A multi-
biometric system for continuous student authentica-
tion in e-learning platforms. Pattern Recognition Let-
ters, 113:83–92.
Fenu, G. and Nitti, M. (2011). Strategies to carry and for-
ward packets in vanet. In International Conference on
Digital Information and Communication Technology
and Its Applications, pages 662–674. Springer.
Hansen, J. H. and Hasan, T. (2015). Speaker recognition by
machines and humans: A tutorial review. IEEE Signal
processing magazine, 32(6):74–99.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resi-
dual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 770–778.
Hristoskova, A., Ag
¨
uero, C. E., Veloso, M., and De Turck,
F. (2012). Personalized guided tour by multiple robots
through semantic profile definition and dynamic redis-
tribution of participants. In Proceedings of the 8th In-
ternational Cognitive Robotics Workshop at AAAI-12,
Toronto, Canada.
Hu, J., Shen, L., and Sun, G. (2017). Squeeze-
and-excitation networks. arXiv preprint
arXiv:1709.01507, 7.
Irfan, B., Lyubova, N., Ortiz, M. G., and Belpaeme, T.
(2018). Multi-modal open-set person identification in
hri.
Jain, A., Hong, L., and Pankanti, S. (2000). Biometric iden-
tification. Communications of the ACM, 43(2):90–98.
Koide, K. and Miura, J. (2016). Identification of a speci-
fic person using color, height, and gait features for a
person following robot. Robotics and Autonomous Sy-
stems, 84:76–87.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012).
Imagenet classification with deep convolutional neu-
ral networks. In Advances in neural information pro-
cessing systems, pages 1097–1105.
Liu, H., Hu, L., and Ma, L. (2017). Online RGB-D person
re-identification based on metric model update. CAAI
Transactions on Intelligence Technology, 2(1):48–55.
L
´
opez, J., P
´
erez, D., Santos, M., and Cacho, M. (2013a).
Guidebot. A tour guide system based on mobile ro-
bots. International Journal of Advanced Robotic Sys-
tems, 10.
L
´
opez, J., P
´
erez, D., Zalama, E., and Gomez-Garcia-
Bermejo, J. (2013b). Bellbot - a hotel assistant system
using mobile robots. International Journal of Advan-
ced Robotic Systems, 10.
Lukic, Y., Vogt, C., D
¨
urr, O., and Stadelmann, T. (2016).
Speaker identification and clustering using convoluti-
onal neural networks. In 2016 IEEE 26th Internatio-
nal Workshop on Machine Learning for Signal Pro-
cessing (MLSP), Vietri sul Mare, Italy, 13-16 Sept.
2016. IEEE.
Mac, T. T., Copot, C., Tran, D. T., and De Keyser, R. (2017).
A hierarchical global path planning approach for mo-
bile robots based on multi-objective particle swarm
optimization. Applied Soft Computing, 59:68–76.
Martinson, E. and Lawson, W. (2011). Learning speaker re-
cognition models through human-robot interaction. In
Robotics and Automation (ICRA), 2011 IEEE Interna-
tional Conference on, pages 3915–3920. IEEE.
ICPRAM 2019 - 8th International Conference on Pattern Recognition Applications and Methods
264