REFERENCES
Adafruit (2017). Adafruit circuitpython amg88xx. https://gi
thub.com/adafruit/Adafruit CircuitPython AMG88xx.
Basu, C. and Rowe, A. (2015). Tracking motion and
proxemics using thermal-sensor array. arXiv preprint
arXiv:1511.08166.
Beltran, A., Erickson, V. L., and Cerpa, A. E. (2013). Ther-
mosense: Occupancy thermal based sensing for hvac
control. In Proceedings of the 5th ACM Workshop
on Embedded Systems For Energy-Efficient Buildings,
pages 1–8. ACM.
Fan, X., Zhang, H., Leung, C., and Shen, Z. (2017). Robust
unobtrusive fall detection using infrared array sensors.
In Multisensor Fusion and Integration for Intelligent
Systems (MFI), 2017 IEEE International Conference
on, pages 194–199. IEEE.
Gerka, A., Pfingsthorn, M., Lupkes, C., Sparenberg, K.,
Frenken, M., Lins, C., and Hein, A. (2018). Detecting
the number of persons in the bed area to enhance the
safety of artificially ventilated persons. In 2018 IEEE
20th International Conference on e-Health Network-
ing, Applications and Services (Healthcom), pages 1–
6. IEEE.
Gonzalez, L. I. L., Troost, M., and Amft, O. (2013). Us-
ing a thermopile matrix sensor to recognize energy-
related activities in offices. Procedia Computer Sci-
ence, 19:678–685.
Hsu, C.-W., Chang, C.-C., Lin, C.-J., et al. (2003). A prac-
tical guide to support vector classification.
Jeong, Y., Yoon, K., and Joung, K. (2014). Probabilis-
tic method to determine human subjects for low-
resolution thermal imaging sensor. In Sensors Appli-
cations Symposium (SAS), 2014 IEEE, pages 97–102.
IEEE.
Mashiyama, S., Hong, J., and Ohtsuki, T. (2015). Activity
recognition using low resolution infrared array sensor.
In Communications (ICC), 2015 IEEE International
Conference on, pages 495–500. IEEE.
Mubashir, M., Shao, L., and Seed, L. (2013). A survey on
fall detection: Principles and approaches. Neurocom-
puting, 100:144–152.
Niehorster, D. C., Li, L., and Lappe, M. (2017). The accu-
racy and precision of position and orientation tracking
in the htc vive virtual reality system for scientific re-
search. i-Perception, 8(3):2041669517708205.
Panasonic (2016). White paper: Grid-eye state of the art
thermal imaging solution. Accessed: 2018-11-16.
Panasonic (2017). Data sheet: Infrared array sensor grid-
eye (amg88). Accessed: 2018-11-18.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.
Rapoport, M. (2012). The home under surveillance:
A tripartite assemblage. Surveillance & Society,
10(3/4):320.
Razavi, S. S., Fathi, M., and Hajiesmaeili, M. (2016). In-
tensive care at home: An opportunity or threat. Anes-
thesiology and pain medicine, 6(2).
Shetty, A. D., Shubha, B., Suryanarayana, K., et al. (2017).
Detection and tracking of a human using the in-
frared thermopile array sensorgrid-eye. In Intelligent
Computing, Instrumentation and Control Technolo-
gies (ICICICT), 2017 International Conference on,
pages 1490–1495. IEEE.
Trofimova, A. A., Masciadri, A., Veronese, F., and Salice,
F. (2017). Indoor human detection based on thermal
array sensor data and adaptive background estimation.
Journal of Computer and Communications, 5(04):16.
World Health Organization (2015). World report on ageing
and health. World Health Organization.
ICT4AWE 2019 - 5th International Conference on Information and Communication Technologies for Ageing Well and e-Health
188