http://yahoohadoop.tumblr.com/post/98098649696/
yahoo-launches-worlds-largest-hadoop-production.
Accessed: September 2018.
Dean, J. and Ghemawat, S. (2004). Mapreduce: Simplified
data processing on large clusters. In OSDI04: Sixth
Symposium on Operating System Design and Imple-
mentation,
Docker (2018). Online: https://docs.docker.com/. Ac-
cessed: September 2018.
El Ioini, N. and Pahl, C. (2018). A review of distributed
ledger technologies. OTM Confederated International
Conferences.
Femminella, M., Pergolesi, M., and Reali, G. (2016). Per-
formance evaluation of edge cloud computing system
for big data applications. In 5th IEEE International
Conference on Cloud Networking (Cloudnet), pages
170-175.
Fowley, F., Pahl, C., Jamshidi, P., Fang, D., and Liu, X.
(2018). A classification and comparison framework
for cloud service brokerage architectures IEEE Trans-
actions on Cloud Computing 6 (2), 358-371.
Heinrich, R., van Hoorn, A., Knoche, H., Li, F., Lwakatare,
L.E., Pahl, C., Schulte, S., and Wettinger, J. (2017).
Performance engineering for microservices: research
challenges and directions. Proceedings of the 8th
ACM/SPEC on International Conference on Perfor-
mance Engineering Companion.
Jamshidi, P., Sharifloo, A., Pahl, C., Arabnejad, A., Met-
zger, A., and Estrada, G. (2016). Fuzzy self-learning
controllers for elasticity management in dynamic
cloud architectures. 12th International ACM Confer-
ence on Quality of Software Architectures (QoSA).
Jamshidi, P., Sharifloo, A., Pahl, C., Metzger, A., and
Estrada, G. (2015). Self-learning cloud controllers:
Fuzzy q-learning for knowledge evolution. arXiv
preprint arXiv:1507.00567.
Jamshidi, P., Pahl, C., Mendonca, N.C., Lewis, J., and
Tilkov, S. (2018). Microservices: The Journey So Far
and Challenges Ahead. IEEE Software 35 (3), 24-35.
Jamshidi, P., Pahl, C., and Mendonca, N.C. (2016). Man-
aging uncertainty in autonomic cloud elasticity con-
trollers. IEEE Cloud Computing, 50-60.
Johnston, S.J., Basford, P.J., Perkins, C.S., Herry, H., Tso,
F.P., Pezaros, D., Mullins, R.D., Yoneki, E., Cox, S.J.,
and Singer, J. (2018). Commodity single board com-
puter clusters and their applications. Future Genera-
tion Computer Systems, 89: 201-212.
Hentschel, K., Jacob, D., Singer, J., and Chalmers, M.
(2016). Supersensors: Raspberry pi devices for smart
campus infrastructure. IEEE Intl Conf on Future In-
ternet of Things and Cloud (FiCloud).
Morabito, R. (2016). A performance evaluation of con-
tainer technologies on internet of things devices.
In IEEE Conference on Computer Communications
Workshops.
Morabito, R., Farris, I., Iera, A., and Taleb, T. (2017). Eval-
uating performance of containerized iot services for
clustered devices at the network edge. IEEE Internet
of Things Journal, 4(4):1019-1030.
Naik, N. (2017). Docker container-based big data process-
ing system in multiple clouds for everyone. In 2017
IEEE International Systems Engineering Symposium
(ISSE), pages 1-7.
Pahl, C. and Lee. B. (2015). Containers and clusters for
edge cloud architectures - A technology review. IEEE
Intl Conf on Future Internet of Things and Cloud.
Pahl, C., El Ioini, N., Helmer, S., and Lee, B. (2018). An
architecture pattern for trusted orchestration in IoT
edge clouds. Third International Conference on Fog
and Mobile Edge Computing (FMEC).
Pahl, C., Jamshidi, P., and Zimmermann, O. (2018). Archi-
tectural principles for cloud software. ACM Transac-
tions on Internet Technology (TOIT) 18 (2), 17.
Pahl, C., Helmer, S., Miori, L., Sanin, J., and Lee. B.
(2016). A container-based edge cloud paas architec-
ture based on raspberry pi clusters. IEEE International
Conference on Future Internet of Things and Cloud
Workshops (FiCloudW).
Renner, T., Meldau, M., and Kliem, A. (2016). Towards
container-based resource management for the inter-
net of things. In International Conference on Software
Networking (ICSN).
Renner, M. (2016). Testing high availability of
docker swarm on a raspberry pi cluster. Online:
https://blog.hypriot.com/post/high-availability-with-
docker/, 2016. Accessed: September 2018.
Renner, M. (2016). Evaluation of high availability perfor-
mance of kubernetes and docker swarm on a raspberry
pi cluster. Highload++ Conference.
Raspberry Pi Foundation (2018). Online:
https://www.raspberrypi.org/products/raspberry-p
i-2-model-b/. Accessed: September 2018.
Taibi, D., Lenarduzzi,V., and Pahl, C. (2018). Architec-
tural patterns for microservices: a systematic mapping
study. Proc. 8th Intl Conf. Cloud Computing and Ser-
vices Science.
Tso, F.P., White, D.R., Jouet, S., Singer, J., and Pezaros,
D.P. (2013). The glasgow raspberry pi cloud: A scale
model for cloud computing infrastructures. In IEEE
33rd International Conference on Distributed Com-
puting Systems Workshops.
Turner, V. (2014). The Digital Universe of Opportunities:
Rich Data and the Increasing Value of the Internet of
Things. IDC Report.
von Leon, D., Miori, L., Sanin, J., El Ioini, N., Helmer,
S., and Pahl, C. (2018). A Performance Exploration
of Architectural Options for a Middleware for Decen-
tralised Lightweight Edge Cloud Architectures. Intl
Conf on Internet of Things, Big Data and Security.
von Leon, D., Miori, L., Sanin, J., El Ioini, N., Helmer, S.,
and Pahl, C. (2019). A Lightweight Container Mid-
dleware for Edge Cloud Architectures. Fog and Edge
Computing: Principles and Paradigms, 145-170. Wi-
ley & Sons.
Wang, Y., Goldstone, R., Yu, W., and Wang, T.
(2014). Characterization and optimization of memory-
resident mapreduce on hpc systems. In IEEE 28th Intl
Parallel and Distributed Processing Symposium.
CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science
80