IEEE 1st International Forum on Research and Tech-
nologies for Society and Industry Leveraging a better
tomorrow (RTSI), pages 249–257.
Cortes, C. and Vapnik, V. (1995). Support-vector networks.
Machine learning, 20(3):273–297.
Freund, Y. and Schapire, R. E. (1997). A decision-theoretic
generalization of on-line learning and an application
to boosting. Journal of Computer and System Sci-
ences, 55(1):119 – 139.
Habernal, I., Pt
´
a
ˇ
cek, T., and Steinberger, J. (2013). Senti-
ment analysis in czech social media using supervised
machine learning. In Proceedings of the 4th Workshop
on Computational Approaches to Subjectivity, Senti-
ment and Social Media Analysis, pages 65–74. Asso-
ciation for Computational Linguistics.
Ho, T. K. (1995). Random decision forests. In Proceedings
of the Third International Conference on Document
Analysis and Recognition (Volume 1) - Volume 1, IC-
DAR ’95, pages 278–, Washington, DC, USA. IEEE
Computer Society.
Ho, T. K. (1998). The random subspace method for con-
structing decision forests. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 20(8):832–
844.
Jing, L.-P., Huang, H.-K., and Shi, H.-B. (2002). Im-
proved feature selection approach tfidf in text mining.
In Proceedings. International Conference on Machine
Learning and Cybernetics, volume 2, pages 944–946
vol.2.
Joachims, T. (1998). Text categorization with support vec-
tor machines: Learning with many relevant features.
In N
´
edellec, C. and Rouveirol, C., editors, Machine
Learning: ECML-98, pages 137–142, Berlin, Heidel-
berg. Springer Berlin Heidelberg.
Kocsor, A. and T
´
oth, L. (2004). Application of kernel-based
feature space transformations and learning meth-
ods to phoneme classification. Applied Intelligence,
21(2):129–142.
Medhat, W., Hassan, A., and Korashy, H. (2014). Sentiment
analysis algorithms and applications: A survey. Ain
Shams Engineering Journal, 5(4):1093–1113.
Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean,
J. (2013). Distributed representations of words and
phrases and their compositionality. In Proceedings of
the 26th International Conference on Neural Informa-
tion Processing Systems - Volume 2, NIPS’13, pages
3111–3119, USA. Curran Associates Inc.
Miranda, C. H. and Guzm
´
an, J. (2017). A Review of Senti-
ment Analysis in Spanish. Tecciencia, 12:35 – 48.
Peng, H., Cambria, E., and Hussain, A. (2017). A review of
sentiment analysis research in chinese language. Cog-
nitive Computation, 9(4):423–435.
Pennington, J., Socher, R., and Manning, C. D. (2014).
Glove: Global vectors for word representation. In
Empirical Methods in Natural Language Processing
(EMNLP), pages 1532–1543.
Sheshasaayee, A. and Thailambal, G. (2017). Com-
parison of classification algorithms in text mining.
International Journal of Pure and Applied Math,
116(22):425–433.
Tamchyna, A., Fiala, O., and Veselovsk, K. (2015). Czech
aspect-based sentiment analysis: A new dataset and
preliminary results. In Proceedings of the 15th con-
ference ITAT 2015: Slovenskoesk NLP workshop
(SloNLP 2015), pages 95–99, Praha, Czechia. Cre-
ateSpace Independent Publishing Platform.
Tamchyna, A. and Veselovsk
´
a, K. (2016). Ufal at semeval-
2016 task 5: Recurrent neural networks for sentence
classification. In Proceedings of the 10th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2016), pages 367–371. Association for Computational
Linguistics.
Tellez, E. S., Miranda-Jimnez, S., Graff, M., Moctezuma,
D., Siordia, O. S., and Villaseor, E. A. (2017). A
case study of spanish text transformations for twitter
sentiment analysis. Expert Systems with Applications,
81:457 – 471.
Veselovsk
´
a, K. (2017). Sentiment analysis in Czech, vol-
ume 16 of Studies in Computational and Theoretical
Linguistics.
´
UFAL, Praha, Czechia.
Veselovsk
´
a, K., Hajic, J., and Sindlerov
´
a, J. (2012). Cre-
ating annotated resources for polarity classification in
czech. In KONVENS, volume 5 of Scientific series of
the
¨
OGAI, pages 296–304.
¨
OGAI, Wien,
¨
Osterreich.
Wu, X., L
¨
u, H.-t., and Zhuo, S.-j. (2015). Sentiment anal-
ysis for chinese text based on emotion degree lexicon
and cognitive theories. Journal of Shanghai Jiaotong
University (Science), 20(1):1–6.
Zhang, S., Wei, Z., Wang, Y., and Liao, T. (2018). Senti-
ment analysis of chinese micro-blog text based on ex-
tended sentiment dictionary. Future Generation Com-
puter Systems, 81:395 – 403.
Sentiment Analysis of Czech Texts: An Algorithmic Survey
979