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Abstract: This paper presents the current status of a research project in computational linguistics/natural language 
processing whose main objective is to develop a symbolic, principle-based, bottom-up system in order to 
process and parse sequences of lexical items as declarative sentences in English. For each input sequence, the 
parser should produce (maximally) binary trees as generated by the Merge operation on lexical items. Due to 
parametric variations in the algorithm, the parser should be able to output (up to four) grammatically feasible 
structural representations accounted by alternative constituent analyses because of structural ambiguities in 
the parsing of the input string.  Finally, the system should be able to state whether a particular string of lexical 
items is a possible sentence in account of its parsability. The system has a scalable software framework that 
may be suitable for the analysis of typologically-diverse natural languages. 

1 INTRODUCTION 

Natural language parsing is a computational process 
that takes as input a sequence of words and yields a 
syntactic structure for said sequence according to 
some sort of procedure. The production of a syntactic 
structure from a sequence determines whether it 
legally belongs to a language. There are two main 
types of parsers used to analyse word sequences. On 
one hand, there are probabilistic parsers which, given 
a statistical model of the syntactic structure of a 
language, will produce the most likely parse of a 
sentence, even if the word sequence is actually judged 
as ungrammatical by native speakers. Probabilistic 
parsers are widely used in natural language 
processing applications. However, they require a 
manually annotated corpus, a statistical learning 
algorithm, as well as training. Although these parsers 
are particularly good in identifying syntactic 
categories or parts of speech and have a desirable 
cost-benefit relation between accuracy and speed, 
they have been found rather ineffective in the 
representation of sentences containing relative 
clauses or long distance relations among constituents. 

Deterministic parsers, on the other hand, use a system 
of syntactic rules to produce a structural 
representation. Deterministic parsers take input 
strings of natural languages and analyse them using 
production rules of a context free grammar. If, for a 
given sequence of lexical items, the rules of a 
language grammar cannot produce a structural 
representation, the sequence is considered 
ungrammatical for that language. 

A single grammatical sequence, however, may 
have multiple representations if it is syntactically 
ambiguous.  The (generally assumed) Principle of 
Compositionality states that the meaning of an 
expressions is a function of the meaning of its parts 
and of the way they are syntactically combined 
(Partee, 2004).  As a consequence, syntactically 
ambiguous sequences may also be semantically 
ambiguous. There are two main causes of syntactic 
ambiguity: referential and structural. Referential 
ambiguity is due to possible valuations and 
interpretations of noun phrases and pronouns, as it 
happens with the three possible assignments of the 
possessive pronoun in the woman said that she kicked 
her lover. Structural ambiguity occurs when there 
exist multiple structural relations between the lexical 
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items and constituents of a sentence, as in the 
classical example the boy saw a man with a telescope. 
Sometimes, structural ambiguity is caused by 
multiple syntactic category assignment to a lexical 
item, as can be seen in visiting relatives can be a 
nuisance, in which the first word can be tagged either 
as a transitive verb or as an adjective.  In this paper, a 
computational system is described that detects 
syntactic ambiguity in a string and yields the 
correspondent structural representations. 

For most probabilistic parsers, syntactic 
ambiguity, even ungrammaticality, remains 
undetected. To deal with structural ambiguity, we 
propose a deterministic (symbolic) parser that 
produces X-bar structural representations based on 
Principle-and-Parameters Theory modules to 
generate multiple syntactic parses for syntactically 
ambiguous sentences. Deterministic parsers in the 
form of minimalist grammars have been already 
formalized (Stabler, 1997, 2011; Collins and Stabler, 
2016). Other symbolic parsers have been developed 
as computational models of syntactic competence 
(Berwick, 1985; Fong, 1991, 2005; Chesi, 2004, 
2012); however, the parser we propose implements 
variation parameters that may account for structural 
ambiguity. 

2 THEORETICAL 
BACKGROUND 

Principles and Parameters Theory (Chomsky, 1981, 
1995) is a generative-derivational theory of the 
human Faculty of Language. According to this 
theory, a natural (I-)language is an internal, 
individual, intensional cognitive state of the human 
mind (hence a mental organ) whose initial state, 
known as Universal Grammar (UG), contains a set of 
invariable principles and constraints that apply to all 
languages, as well as a set of variable parameters 
(possibly binary-valued) that children set during 
language acquisition from the primary linguistic data 
to which they are exposed. Among the fundamental 
principles of UG are the Structural Dependency 
Principle (syntactic structures show hierarchical 
structure and non-linear dependencies) and the 
Projection Principle (every minimal category projects 
its features to a maximal or phrase-level projection). 
Some of the best studied syntactic parameters are the 
Null Subject Parameter (languages may allow or 
disallow null subjects in finite clauses) and the Head 
Parameter (syntactic heads can be linearized before or 
after their complements). Languages, as steady states 

in the development of the Faculty of Language, are 
computational cognitive systems consisting of a 
lexicon, that contains representations of all primitives 
of linguistic computation (along with their features), 
and a grammar, a combinatorial system of operations 
on these representations. Sequences that satisfy all 
grammatical constraints of a language are mapped to 
(at least) one tuple of syntactic levels of structural 
representations: the theory-internal levels of what has 
been known as Deep and Surface Structure (DS, SS), 
and the interface levels of Logical Form (LF) and 
Phonetic Form (PF). In this theory, constraints are 
highly modularized and apply to syntactic structures 
from a certain level of representation onwards. 

X-bar is a powerful and compact module of 
Principles and Parameters Theory (Adger, 2003; 
Carnie, 2013; Sportiche, Koopman and Stabler, 2014) 
for the representation of syntactic category formation 
in natural language, as it yields hierarchical structures 
in binary trees that encode the constituency of a 
sentence. The syntactic category or part-of-speech of 
a lexical item in a sentence is determined according 
to the item’s morphology, grammatical features and 
syntactic distribution. Syntactic categories with 
referential meaning or content are classified as lexical 
(nouns, verbs, adjective, adverbs, prepositions), while 
those that strictly serve grammatical purposes and are 
required for well-formedness are called functional 
(determiners, complementisers, coordinators, tense, 
auxiliaries, negation). Heads are lexical items from 
which full phrases are formed and they project 
themselves into different levels.   X-bar theory (where 
the variable X stands for a syntactic category) 
assumes three syntactic projection levels: minimal, 
intermediate and maximal. In the X-bar binary tree 
structure, minimal projections or heads (denoted 
sometimes as X°) are nuclear categories and do not 
dominate any other category, in other words, the 
terminal nodes of a syntactic tree. Intermediate 
projections (denoted as X' and read as “X-bar”) are 
typically generated from the merge of a minimal 
projection and a subcategorized complement. 
Maximal projections or phrases (denoted as XP) are 
the highest level of a nuclear category which has 
satisfied all its subcategorization requirements and 
may dominate another phrase-level constituent (a 
specifier) merged with the intermediate projection. 
The X-bar module has only three general rules that 
apply to all lexical categories, i.e. the specifier rule, 
the complement rule, and the adjunct rule. The 
context-free X-bar rules may be combined in any 
order so it allows the production of different 
structures from the same array of words or lexical 
items. As a recursive rule, Adjunction is the most 
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unconstrained syntactic operation and is related to 
most instances of structural ambiguity.  X-bar by 
itself is overgenerative, which is problematic for a 
descriptively adequate model of linguistic 
competence. For this reason, other syntactic modules, 
like the Thematic Criterion, Case Filter, Binding 
Principles and Bounding Theory, among others, are 
needed to impose conditions on the legal 
combinations in a language. 

More recent proposals call for a Minimalist 
Program (Chomsky, 1995, 2000) in the revision of 
linguistic theory. Under closer analysis, X-bar may 
not be a primitive, independently motivated principle 
of Universal Grammar, but the result of Merge, a 
more fundamental, recursive, binary operation on 
syntactic structures. Also, LF and PF may be the only 
required levels of syntactic representation as they are 
the interface between the computational system (the 
grammar) and both the conceptual-intentional and 
sensory-motor external systems. 

3 SYSTEM ARCHITECTURE 

As a computational model of syntactic analysis, the 
system we describe has two main components, i.e., 
the parser and the lexicon. The parsing process 
requires an input in the form of a word sequence. The 
input sequence is tokenized during the pre-processing 
stage. Tokenization involves the segmentation of a 
string into lexical items or word elements called 
tokens. The syntactic category or part-of-speech 
tagging process takes place right after tokenization. 
This process will access each tokenized element’s 
grammatical features. For the tagging process to be 
successful, the tokenized element must be found in 
the lexicon. The parser will take the tagged sequence 
and will establish a relationship between each tagged 
element by generating the syntactic structures of the 
input word sequence in the form of binary trees that 
correspond to the SS level of syntactic representation. 

3.1 The Parser 

Parsing can be performed by means of bottom-up or 
top-down approaches. In the system described, a 
bottom-up, bidirectional algorithm is implemented 
that produces multiple binary trees when a sequence 
has syntactic ambiguity. The algorithm starts by 
segmenting the sequence into tokens that correspond 
to lexical items; this is followed by the categorization 
of each lexical item and the application of the 
syntactic rules in X-bar to produce the parse tree. The 
absolute upper bound of structural representations for 

a given sequence of n lexical items corresponds to the 
n-1 Catalan number, a sequence of natural numbers 
that are used in combinatorics to determine, among 
other things, the number of distinct binary trees that 
can be created from a number of nodes. 

 

Figure 1: Interaction of direction and inspection. 

The parser currently takes into account three 
parameters in order to be able to produce multiple 
representations in case of structural ambiguity. These 
parameters are direction, inspection and delay. The 
direction parameter determines if the input word 
sequence is to be analysed from left to right or from 
right to left. The implemented algorithm is 
bidirectional (LR and RR) because it analyses word 
sequences from left to right and from right to left, 
producing in both cases a rightmost derivation in 
reverse (Grune and Jacobs, 2008).  The inspection 
parameter determines if the current lexical element 
looks forwards or backwards to compare itself with 
another lexical item to check for selection features. If 
the analysis is from left to right, the inspection 
parameter must be forwards (look one token ahead); 
if the analysis is from right to left then the inspection 
must be backwards (look one token back). 

As it can be seen in (1), the setting of the 
inspection parameter is dependent on the direction 
parameter. Syntactic heads are categories with 
c(ategorial)-selection features or requirements 
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(subcategorization). In the case of head-first 
languages as English, the c-selection features of a 
head can be checked by a constituent to its right.  In 
the case of subject-object-verb (SOV) or head-last 
languages, the left to right analysis would have 
backward inspection (1bi) and the right to left 
analysis would have forward inspection (1bii). Since 
this parser currently deals with declarative sentences 
in English, which show the subject-verb-object 
(SVO) constituent order typical of head-first 
languages, the inspection parameter is set to forward 
if the direction is left to right (1ai), but it is set to 
backwards if the direction is right to left (1aii). 

 

Figure 2: Interaction of direction, inspection, and delay. 

The delay parameter, which is either true or false, 
determines if the formation of determiner phrases 
(DPs) not governed by a preposition are delayed until 
other phrase formations take place. The delay in the 
formation of these DPs, i.e., the merge of a determiner 
(D) with a noun phrase (NP), allows the formation of 
more complex DPs in certain contexts, particularly 
within verbal phrases (VPs). For example, 
prepositional phrases (PPs) can sometimes be parsed 
as adjuncts (modifiers) of VPs or as adjuncts of NPs, 
but not as adjuncts of DPs (for syntactic and semantic 

reasons out of the scope of this paper). While an NP 
is not merged with a D, the NP may adjoin a PP; 
otherwise, the PP can only be merged to the structure 
via VP adjunction. For example, the sequence saw a 
man with a telescope has two structural descriptions 
as shown in (2). Without DP delay (2a), the DPs a 
man and a telescope are formed within the same 
iteration. In the next iteration, the VP saw a man and 
the PP with a telescope are formed; thus, the PP can 
only adjoin the VP. However, with DP delay (2b), the 
merge of the D a with an NP is delayed, allowing the 
formation of a more complex NP with PP adjunction. 
As can be observed, the formation of the DP a 
telescope is not delayed as this DP is governed by the 
P with. Since the direction and inspection parameters 
seem to be mutually dependent, the combination of 
these three parameters will produce a total of four 
variations of the same basic algorithm. This allows 
for the possible production of up to four syntactic 
representations for structurally ambiguous word 
sequences. 

3.2 The Lexicon 

The lexicon is the language module that contains the 
grammatical information about the lexical items in 
the sentence that is to be analysed by the parser. Since 
it is necessary to determine if a certain combination 
of words is licensed or grammatical in the language, 
this system also requires the construction of a robust 
lexicon that at least contains the syntactic category, 
subcategorization frames and relevant grammatical 
features (such as case, c-selectional and phi- [or 
agreement] features) for each lexical item. As Fong, 
(2005:313) defines it, the lexicon is “the heart of the 
implemented system.” 

For this system, the lexicon was manually tagged 
by a team of linguists. To facilitate pre-processing, 
the lexicon contains every fully inflected word-form 
appearing in a corpus of 200 sentences that were 
constructed for validation purposes.  Lexical items 
are entered as a string of literals, and features are 
indicated by means of different data types. All lexical 
items are labelled with a syntactic category; 
additionally, each category requires a specific subset 
of valued features. 

Verb. The main predicative category, verbs are 
labelled according to their argument structure with 
the subclasses transitive, ditransitive and intransitive, 
and by their tense, aspect and mood (TAM) features 
as ±pret, perf, prog, pas, base. Transitive and 
ditransitive verbs are assigned a case feature, 
acc(usative), and are given a subcategorization frame 
for arg1; ditransitive verbs subcategorize also for 
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arg2. Optional c-selection features in 
subcategorization frames are indicated within 
parentheses. Intransitive verbs, on the other hand, 
which include both unergative and unaccusative 
verbs, are not assigned case or c-selection features. 
As for TAM features, verb forms tagged as ±pret, 
perf, prog, and pas are also labelled as finite with a 1 
bit, and those tagged as base were labelled as non-
finite with a 0 bit. In the case of passive participles, 
they are tagged as pas, no case feature is assigned, 
their arg1 frame is replaced with their arg2 frame, 
leaving the arg2 frame subsequently as an empty list. 
In this way, the parser could be able to analyse 
passive declarative clauses without accounting for 
syntactic movement or thematic roles. 

Auxiliary. Items of this category are tagged with a 
subclass: Perf, Prog, Pas.  Each auxiliary c-selects for 
a specific subclass of AuxP or VP with a particular 
TAM feature.  For example, the perfect auxiliary has 
c-selects a VP (or another AuxP) with TAM perf: He 
has interrogated the witness; He has been 
interrogated. 

T(ense). This category includes true modals and 
tense/finiteness markers. Items of this category 
always precede the negation particle not, are assigned 
a nom(inative) case feature, and c-select either a VP, 
an AuxP or a NegP as arg1 and (with the exception of 
infinitival to) a DP or CP as arg0. As a consequence, 
T will always merge with a verbal (functional) 
projection as complement and with a nominal or a 
clause-level projection in their specifier as a subject. 
Thus, the universal requirement that every clause 
must have a subject (known in the syntactic literature 
as the Extended Projection Principle or EPP) is 
satisfied to check the c-selection features in arg0. 

Complementiser. With the exception of small 
clauses and raising structures, complementisers (Cs) 
are the maximal functional category of clauses and 
sentences. At this stage of the implemented system, 
complementisers are only labelled by their force as 
±Q, although the parser is not yet handling 
interrogatives. Cs c-select a TP complement, and it is 
so specified in the arg1 frame. 

Noun. Words of this category are classified as 
common or proper, which is syntactically relevant as 
the latter subclass does not generally admit 
determiners (at least definite and indefinite articles) 
in English. Nouns can also have argument structure, 
specially deverbal nouns, which they inherit from the 
verb they are derived from.  But, unlike verbs, the c-
selection features of nouns need not be checked in 
order to produce a well-formed structure: The 
destruction was imminent; the destruction of 
Carthage was imminent. 

Determiner. This nominal functional category 
includes articles, demonstratives, possessives, as well 
as quantifiers and personal pronouns. The distribution 
of DPs is highly constrained: all (referential) DPs 
must be syntactically licensed by certain heads in 
order to appear in well-formed structures. Thus, the 
syntactic module of Case Theory rules the licensing 
and distribution of DPs. In order to implement this 
constraint, all Ds have to check a formal case feature 
with a licensing head: finite T, which checks (nom); 
transitive V, (acc); prepositions (Ps), obl(ique). Most 
determiners (with the exception of personal 
pronouns) may check any case in order to be licensed. 
On the other hand, since case in personal pronouns is 
morphological and not abstract, they must check a 
specific case according to their morphology: he must 
check nom; him must check either acc or obl. Non-
pronominal determiners also c-select a complement 
NP, which is specified in the arg1 frame. 

Other categories, such as adjective, adverb and 
preposition, are also labelled in the lexicon with the 
applicable features. 

4 IMPLEMENTATION, TESTING 
AND RESULTS 

The system was implemented in Python 3.6.1. The 
lexicon was provided and stored in a MySQL 
database system. The tagging process needed the 
pymysql external library in order to communicate 
with the database. The parsing algorithm was purely 
implemented in python but the representation of the 
binary trees was represented through the use of the 
external libraries Plotly and igraph. 

As for the database system, a decision was made 
between different technologies that best fitted the 
system. MySQL was chosen mainly because of its 
compatibility with all operating systems and 
horizontal partitioning.  As soon as the lexicon was 
completed, the design of the database started by 
defining its entity relationship diagram, how the 
tables should look, and the queries to be utilized for 
the algorithm. The database uses four tables: Lexicon, 
Arguments, Case, and Contractions. As each lexical 
item has a maximum of three arguments, a separate 
table was created to avoid mistakes on the lexicon. It 
should also be noted that, since arguments are 
represented as a string separated with commas, there 
is no intermediate table to assign an argument to each 
lexical item, since that is exactly what the tagging 
component will be expecting to receive. The final 
table, Contractions, was created to manage 
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contractions in a dynamic way.  The tokenizer 
communicates with the server and, if a contraction is 
found on the sentence, it is separated in the two 
lexical items that form the contraction so the parser 
can analyse them. This Contractions table bears no 
relationship with the other tables created so far. 

The system has a pipeline structure shown in (3): 

 

Figure 3: Pipeline structure of the system. 

The system efficiency was tested with a set of 200 
declarative sentences that was constructed to validate 
the algorithm. The two major aspects of testing 
involved grammaticality judgement and ambiguity 
detection. Ambiguous sequences have first to be 
considered as grammatical before alternate 
representations are produced. For the system to pass 
the grammaticality judgement test for a particular 
sequence, at least one structural representation must 
be produced for the sequence to be identified as 
grammatical. On the other hand, to pass the ambiguity 
detection test, the analyser had to produce at least two 
syntactic representations for a structurally ambiguous 
sequence. The parser correctly identified a sequence 
as grammatical for 78% of the validation sentences. 
The ambiguity detection test resulted in an 82.76% 
success rate for the grammatically identified 
sequences. However, some structures were 
particularly difficult for the parser to judge as 
grammatical, like for example, subordinate finite 
clauses with null complementisers, as in I think he 
will not leave the house. Although grammatically 
correct, this sequence failed to parse due to the fact 
that the verb think assigns accusative case to 
determiners and pronouns, yet the case feature of he 
is nominative, which was interpreted by the parser as 
a case feature mismatch. As expected, the sequence is 
judged correctly when the complementiser is overt (I 
think that he will not leave the house). Non-finite 
clauses were also challenging, like infinitival subjects 
(To err is human), which the current algorithm does 
not parse, and adjunct gerundive clauses (I will meet 
John eating waffles), since the parser expected 
present participles to be licensed by a progressive 
auxiliary. Double object constructions (Poirot 
promised Maigret the job last week) and Saxon 
genitive constructions (The army's destruction of the 
city was imminent) were typically misjudged by the 

parser as ungrammatical, on account of a case 
checking failure. Finally, for some sequences, 
although correctly judged as grammatical, the parser 
did not detect ambiguity (I ate the macaroni that my 
mother cooked yesterday). 

5 CURRENT LIMITATIONS AND 
FUTURE WORK 

The validation test results were promising, yet there 
are still some foreseen limitations in the system. 
Currently, the parser cannot produce all possible 
adjunctions in cases of four or more consecutive 
maximum projections on which adjunction can be 
performed (such as APs, PPs, and CPs for NPs; 
AdvPs, PPs and CPs for VPs). Two mechanisms have 
been identified to overcome this limitation. First, a 
new parameter, adjunction implementation, may be 
added to the algorithm. This parameter may signal 
either of two methods: sequential adjunction, in 
which only the original nodes of the current iteration 
would be available objects for adjunction, or nested 
adjunction, in which the newly formed nodes by 
previous adjunction within an iteration would be 
available as well for this operation. Each method 
produces distinct results in sequences of four or more 
consecutive maximal projections that can be 
adjoined. A second, perhaps simpler and more elegant 
mechanism, involves a recursive method that 
generates all possible adjunction patterns of this 
binary operation. 

Due to time constraints in the project 
development, the current implementation deals with 
CPs in a somewhat different way than other phrases, 
by using a top-down rule instead of the typical 
bottom-up strategy used everywhere else. This fact 
may be the cause of some failures in infinitival 
subject analysis and other non-finite clauses, as well 
as occasional flaws in ambiguity detection in 
subordinate clauses. This present limitation is 
expected to be relatively easy to overcome by adding 
extra rules or functionalities to the implementation. 

Noun phrases allow for empty determiners (nude 
NPs) for certain kinds of noun heads. Not only the 
distinction between common and proper nouns is 
relevant in this regard, but also the distinction 
between count and mass nouns is necessary for the 
correct grammaticality judgement of nude NPs in 
sentences. Some polysemic nouns have a meaning 
associated with the mass noun class and another with 
the count noun class (as with resistance). This 
requires additional tagging in the lexicon for the 
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distinction between these two subclasses, along with 
a method in the parsing implementation to handle the 
distinction appropriately. Also within the nominal 
domain, the Saxon genitive construction was 
challenging. A solution to the problem requires a 
treatment similar to the contractions and labelling ’s 
as a D that c-selects an arg0. 

Double object constructions, or even ditransitives 
in general, may present a challenge to our current 
system. For similar reason, complex NPs with more 
than one argument may not be correctly parsed. 
Among possible solutions to this problem is the 
inclusion of other functional or light categories to 
allow for richer structural representations. 

Currently, all intransitive verbs, either 
unaccusatives or unergatives, are handled in the same 
way by the system. This may be problematic for the 
analysis of passive construction or for auxiliary 
selection in languages where the choice of certain 
verbal auxiliaries is dependent on whether the verb is 
unaccusative or not. Again, a richer VP-internal 
structure representation may be needed, as well as 
some implementation of a Theta-Theory module for 
both the parser and the lexicon. 

Since the current parser does not account for 
syntactic movement, structures that require overt 
transformations such as interrogatives and relative 
clauses are not analysed. A single syntactic object 
may not comply with all required conditions, but a 
chain structure consisting of a moved object (such as 
a DP) and its trace in its base position would comply 
simultaneously with, for example, Case Filter and 
Theta Theory, respectively. Different mechanisms 
are being considered for its implementation. 

Along with the inclusion of mechanisms to 
account for movement, it would be necessary for the 
parser to recognize locality of dependencies and 
violations thereof, for which a Bounding Theory 
module must be implemented. 

Referential ambiguity is not detected by the 
present system, as it requires additional data 
structures, as indices for coreferentiality and the 
implementation of Binding Conditions on the 
interpretation of referential expressions and 
pronouns. Various mechanisms should be considered 
to overcome this limitation. 

The structural representations generated by this 
system mostly correspond to the SS level of syntactic 
representation. At this level, certain operator scope 
ambiguities may not be detected. These scope 
differences are encoded in the LF interface level, 
where it is argued that operators such as quantifiers or 
interrogative expressions covertly move, obeying the 
same movement restrictions and locality conditions 

of overt movements. To achieve this, the system 
would have to generate LF structural representations 
instead. Operating on logical forms would also 
facilitate the integration of this system with semantic 
functionalities such as semantic composition and 
valuation, and textual entailment. 

Fortunately, this computational system has been 
purposely designed to have a scalable software 
framework, so that more functionalities may be added 
with minimum impact on current methods and data 
structures. Although at this stage the system has been 
implemented exclusively to analyse English 
sentences, it may well suit typologically-diverse 
natural languages. The lexicon database may be 
easily augmented and the language-specific methods 
to handle English sequences are minimal, an 
advantage inherent to principled-based over rule-
based systems. 
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